Learn More
Myocardial infarction leads to loss of tissue and impairment of cardiac performance. The remaining myocytes are unable to reconstitute the necrotic tissue, and the post-infarcted heart deteriorates with time. Injury to a target organ is sensed by distant stem cells, which migrate to the site of damage and undergo alternate stem cell differentiation; these(More)
Attempts to repair myocardial infarcts by transplanting cardiomyocytes or skeletal myoblasts have failed to reconstitute healthy myocardium and coronary vessels integrated structurally and functionally with the remaining viable portion of the ventricular wall. The recently discovered growth and transdifferentiation potential of primitive bone marrow cells(More)
We have investigated spectrin synthesis and mRNA activity in mice homozygous and heterozygous for six mutations occurring at three distinct loci (nb, ja, sph). When homozygous, these mutations cause severe hemolytic anemias that are characterized by specific spectrin deficiencies. Our results indicate that the primary effect of the nb mutation is a(More)
The identification of regulatory elements from different cell types is necessary for understanding the mechanisms controlling cell type-specific and housekeeping gene expression. Mapping DNaseI hypersensitive (HS) sites is an accurate method for identifying the location of functional regulatory elements. We used a high throughput method called DNase-chip to(More)
Hmgb3 is a member of a family of chromatin-binding proteins that can alter DNA structure to facilitate transcription factor binding. We identified the Hmgb3 cDNA in a subtractive hybridization screen for transcripts that are preferentially expressed in hematopoietic stem cells. We inserted an internal ribosomal entry site-green fluorescence protein cassette(More)
Moloney Murine Leukemia Virus (MoMuLV) causes T cell neoplasms in rodents but is not known to be a pathogen in primates. The core protein and enzyme genes of the MoMuLV genome together with an amphotropic envelope gene are utilized to engineer the cell lines that generate retroviral vectors for use in current human gene therapy applications. We developed a(More)
Eukaryotic core promoters are often characterized by the presence of consensus motifs such as the TATA box or initiator elements, which attract and direct the transcriptional machinery to the transcription start site. However, many human promoters have none of the known core promoter motifs, suggesting that undiscovered promoter motifs exist in the genome.(More)
Pathogenic activation of the LMO2 proto-oncogene by an oncoretroviral vector insertion in a clinical trial for X-linked severe combined immunodeficiency (X-SCID) has prompted safety concerns. We used an adeno-associated virus vector to achieve targeted insertion of a gamma-retroviral long terminal repeat (LTR) driving a GFP expression cassette with flanking(More)
Experiments were performed to determine if retroviral-mediated transfer of the human multidrug resistance 1 gene (MDR1) into murine bone marrow cells would confer drug resistance to the cells and whether the MDR1 gene could be used as a dominant selectable marker in vivo. When mice transplanted with bone marrow cells containing a transferred MDR1 gene were(More)
Transplanted cord blood (CB) hematopoietic stem cells (HSC) and progenitor cells (HPC) can treat malignant and nonmalignant disorders. Because long-term cryopreservation is critical for CB banking and transplantation, we assessed the efficiency of recovery of viable HSCHPC from individual CBs stored frozen for 15 yr. Average recoveries (+/- 1 SD) of(More)