David L. Woods

Learn More
The P3 component of the event-related potential (ERP) is generated in humans and other mammalian species when attention is drawn to infrequent stimuli. We assessed the role of subregions of human posterior association cortex in auditory P3 generation in groups of patients with focal cortical lesions. Auditory P3s were recorded to target (P3b) and unexpected(More)
Auditory sensory memory is a critical first stage in auditory perception that permits listeners to integrate incoming acoustic information with stored representations of preceding auditory events. Here, we investigated the neural circuits of sensory memory using behavioral and electrophysiological measures of auditory processing in patients with unilateral(More)
Visual perception involves the grouping of individual elements into coherent patterns that reduce the descriptive complexity of a visual scene. The physiological basis of this perceptual simplification remains poorly understood. We used functional MRI to measure activity in a higher object processing area, the lateral occipital complex, and in primary(More)
The effect of processing load on event-related brain potentials (ERPs) was investigated in an intermodal selective attention task in which subjects attended selectively to auditory or visual stimuli. Processing load was manipulated by requiring subjects to detect either difficult-to-detect (deviant) or easy-to-detect (DEVIANT) targets in separate blocks of(More)
BACKGROUND While human auditory cortex is known to contain tonotopically organized auditory cortical fields (ACFs), little is known about how processing in these fields is modulated by other acoustic features or by attention. METHODOLOGY/PRINCIPAL FINDINGS We used functional magnetic resonance imaging (fMRI) and population-based cortical surface analysis(More)
Attention powerfully influences auditory perception, but little is understood about the mechanisms whereby attention sharpens responses to unattended sounds. We used high-resolution surface mapping techniques (using functional magnetic resonance imaging, fMRI) to examine activity in human auditory cortex during an intermodal selective attention task.(More)
Age-related declines in attention and cognition have been associated with a difficulty in inhibiting the processing of task-irrelevant information (i.e., the inhibitory deficit hypothesis). However, evidence supporting the inhibitory deficit hypothesis remains equivocal, in part because of complexities in examining the processing of irrelevant stimuli using(More)
Evoked potentials to brief 1,000-Hz tones presented to either the left or the right ear were recorded from 30 electrodes arrayed over the head. These recordings were submitted to two different forms of source analysis: brain electric source analysis (BESA) and variable-resolution electromagnetic tomography (VARETA). Both analyses showed that the dominant(More)
In response to a sustained toneburst a negative baseline shift can be recorded from the human fronto-central scalp regions with an onset latency of approximately 150 msec. This auditory sustained potential is distinct both in its scalp distribution and in its stimulus relationships from the transient response occurring at the onset or offset of the(More)
While auditory cortex in non-human primates has been subdivided into multiple functionally specialized auditory cortical fields (ACFs), the boundaries and functional specialization of human ACFs have not been defined. In the current study, we evaluated whether a widely accepted primate model of auditory cortex could explain regional tuning properties of(More)