Learn More
Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little(More)
MOTIVATION We have used state-space models to reverse engineer transcriptional networks from highly replicated gene expression profiling time series data obtained from a well-established model of T-cell activation. State space models are a class of dynamic Bayesian networks that assume that the observed measurements depend on some hidden state variables(More)
MOTIVATION We have used state-space models (SSMs) to reverse engineer transcriptional networks from highly replicated gene expression profiling time series data obtained from a well-established model of T cell activation. SSMs are a class of dynamic Bayesian networks in which the observed measurements depend on some hidden state variables that evolve(More)
Understanding the regulatory mechanisms that are responsible for an organism's response to environmental change is an important issue in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in(More)
Transcriptional reprogramming forms a major part of a plant's response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single(More)
Inferring the topology of a gene-regulatory network (GRN) from genome-scale time-series measurements of transcriptional change has proved useful for disentangling complex biological processes. To address the challenges associated with this inference, a number of competing approaches have previously been used, including examples from information theory,(More)
BACKGROUND During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples. RESULTS(More)
MOTIVATION In clinical practice, pathological phenotypes are often labelled with ordinal scales rather than binary, e.g. the Gleason grading system for tumour cell differentiation. However, in the literature of microarray analysis, these ordinal labels have been rarely treated in a principled way. This paper describes a gene selection algorithm based on(More)
A model is presented describing the gene regulatory network surrounding three similar NAC transcription factors that have roles in Arabidopsis leaf senescence and stress responses. ANAC019, ANAC055 and ANAC072 belong to the same clade of NAC domain genes and have overlapping expression patterns. A combination of promoter DNA/protein interactions identified(More)
MOTIVATION The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct-but often complementary-information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we(More)