Learn More
Continued advances in metabolic engineering are increasing the number of small molecules being targeted for microbial production. Pathway yields and productivities, however, are often suboptimal, and strain improvement remains a persistent challenge given that the majority of small molecules are difficult to screen for and their biosynthesis does not(More)
The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host's native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the(More)
The functionality of regions within the equatorial domain of Group II chaperonins is poorly understood. Previously we showed that a 70 amino acid sequence within this domain on the single-subunit recombinant thermosome from Methanocaldococcus jannaschii (rTHS) contains residues directly responsible for refolding protein substrates [L.M. Bergeron, C. Lee,(More)
Split T7 RNA polymerase provides new avenues for creating synthetic gene circuits that are decoupled from host regulatory processes—but how many times can this enzyme be split, yet retain function? New research by Voigt and colleagues (Segall-Shapiro et al, 2014) indicates that it may be more than you think. S ynthetic gene circuits have become an(More)
a r t i c l e i n f o The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new(More)
Protein families evolve functional variation by accumulating point mutations at functionally important amino acid positions. Homologs in the LacI/GalR family of transcription regulators have evolved to bind diverse DNA sequences and allosteric regulatory molecules. In addition to playing key roles in bacterial metabolism, these proteins have been widely(More)
Plasmid-based genetic systems in Escherichia coli are a staple of synthetic biology. However, the use of plasmids imposes limitations on the size of synthetic gene circuits and the ease with which they can be placed into bacterial hosts. For instance, unique selective markers must be used for each plasmid to ensure their maintenance in the host. These(More)
BCB graduate students are welcome to ask any of our sta for assistance at any time. is page provides information regarding each sta member's job title. e rst help resource for graduate students is Angel Forward, the sta graduate program coordinator. is year she will handle all graduate student records, including payroll and travel award applications. Her(More)
  • 1