Learn More
  • Philip W Mote, Edward A Parson, Alan F Hamlet, William S Keeton, Dennis Lettenmaier, Nathan Mantua +5 others
  • 2003
The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwest's key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal(More)
Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives—as directed by Congress— to(More)
  • Virginia R Burkett, Douglas A Wilcox, Robert Stottlemyer, Wylie Barrow, Dan Fagre, Jill Baron +6 others
  • 2005
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to(More)
We had the rare opportunity to quantify the relationship between fuels and fire severity using prefire surface and canopy fuel data and fire severity data after a wildfire. The study area is a mixed-evergreen forest of southwestern Oregon with a mixed-severity fire regime. Modeled fire behavior showed that thinning reduced canopy fuels, thereby decreasing(More)
Aim The purpose of this study was to quantify relationships between conifer species distributions and climatic and biophysical variables, in order to provide better insight into the potential for redistribution of species on the landscape in response to climatic change. Location Data are from 10,653 georeferenced sites in Washington State, USA, along a(More)
This study explores potential adaptation approaches in planning and management that the United States Forest Service might adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the(More)
For many Pacific Northwest forests, little is known about the spatial and temporal variability in tree growth – climate relationships, yet it is this information that is needed to predict how forests will respond to future climatic change. We studied the effects of climatic variability on forest growth at 74 plots in the western and northeastern Olympic(More)