David L. Macmillan

Learn More
The capacity to associate stimuli underlies many cognitive abilities, including recognition, in humans and other animals. Vertebrates process different categories of information separately and then reassemble the distilled information for unique identification, storage and recall. Invertebrates have fewer neural networks and fewer neural processing options(More)
Electrical recordings were made from the sensory neurone of the tonic muscle receptor organ in the abdomen of the intact, freely behaving crayfish Cherax destructor. Slow extensions of the abdomen were evoked by lowering a platform from beneath the suspended crayfish, and the movements and tonic sensory neurone activity were videorecorded simultaneously.(More)
Using extracellular and intracellular stimulation, recording and dye-filling, we identified and studied the superficial extensor motor neurons of the crayfish, Cherax destructor. Functional associations of each neuron were characterised by recording its responses to sensory and abdominal cord inputs, its extensor muscle innervation pattern and its(More)
Many crayfish species inhabit murky waters or have a crepuscular lifestyle, which forces them to rely on chemical and mechanical information rather than visual input. Information on how they use one form of mechanical information-tactile cues-to explore their local environment is limited. We observed the exploratory behavior of the crayfish Cherax(More)
Touch is a principal sense in all animals. It is potentially important in species of freshwater crayfish that encounter murky waters or are nocturnal. Little is known about how tactile (touch) stimuli affect exploratory behaviour under these conditions. We placed animals in different tactile situations at the start of an exploration in a dark arena and(More)
Two opposing muscle systems underlie abdominal contractions during escape swimming in crayfish. In this study we used extracellular and intracellular stimulation, recording and dye-filling to systematically identify each of the five deep extensor excitors and single inhibitor of the crayfish, Cherax destructor. Functional associations of each neuron were(More)
1. High-speed cinematography of the escape behaviour of freelymoving crayfish showed that the thoracic and abdominal appendages exhibit stereotyped movements in giant axon-mediated tail flips and in non-giant flips. Three distinct classes of non-giant tail flips were recognized in this study: linear, pitching and twisting flips. 2. In medial giant flips and(More)
The serial homology of arthropods, together with our ability to identify individual neurons from segment to segment, and from animal to animal, provides opportunities for studying the changes wrought by natural selection on specific neural elements when functional requirements change in different parts of the trunk. Using this concept as a guide, we studied(More)
A machine was used to impose controlled movements, closely resembling natural movements, on some of the swimmerets of crayfish with their ventral nerve cords cut between thorax and abdomen. The rhythm of the unrestrained swimmerets could be entrained to the imposed frequency. Full entrainment occurred most readily when three or four swimmerets were(More)
Studies of the control of position and movement of the abdomen of crayfish illustrate a number of features of invertebrate sensory-motor systems that have implications for their use to inform robotic design. We use the abdominal slow extensor motor system to illustrate three of them here: first, the way in which a behaviorally flexible length-servo device(More)