Learn More
We study the problem of pricing items for sale to consumers so as to maximize the seller's revenue. We assume that for each consumer, we know the maximum amount he would be willing to pay for each bundle of items, and want to find pricings of the items with corresponding allocations that maximize seller profit and at the same time are <i>envy-free</i>,(More)
We study the problem of maximizing the expected spread of an innovation or behavior within a social network, in the presence of “word-of-mouth” referral. Our work builds on the observation that individuals’ decisions to purchase a product or adopt an innovation are strongly influenced by recommendations from their friends and acquaintances. Understanding(More)
In many large network settings, such as computer networks, social networks, or hyperlinked text documents, much information can be obtained from the network's spectral properties. However, traditional centralized approaches for computing eigenvectors struggle with at least two obstacles: the data may be difficult to obtain (both due to technical reasons and(More)
Recently, auction methods have been investigated as effective, decentralized methods for multi-robot coordination. Experimental research has shown great potential, but has not been complemented yet by theoretical analysis. In this paper we contribute a theoretical analysis of the performance of auction methods for multi-robot routing. We suggest a generic(More)
Social networks often serve as a medium for the diffusion of ideas or innovations. An individual’s decision whether to adopt a product or innovation will be highly dependent on the choices made by the individual’s peers or neighbors in the social network. In this work, we study the game of innovation diffusion with multiple competing innovations such as(More)
Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products.(More)
Understanding the graph structure of the Internet is a crucial step for building accurate network models and designing efficient algorithms for Internet applications. Yet, obtaining this graph structure can be a surprisingly difficult task, as edges cannot be explicitly queried. For instance, empirical studies of the network of Internet Protocol (IP)(More)