David Keith Smith

Learn More
This paper investigates a series of dendrons based on the Newkome dendritic scaffold that displays a naturally occurring polyamine (spermine) on their surface. These dendrons have previously been shown to interact with DNA in a generation dependent manner with the more highly branched dendrons exhibiting a strong multivalency effect for the spermine surface(More)
This paper uses a combined experimental and theoretical approach to gain unique insight into gene delivery. We report the synthesis and investigation of a new family of second-generation dendrons with four triamine surface ligands capable of binding to DNA, degradable aliphatic-ester dendritic scaffolds, and hydrophobic units at their focal points. Dendron(More)
Novel gene delivery agents based on combining cholesterol units with spermine-functionalised dendrons exhibit enhanced transfection ability-we report significant synergistic effects in mixed (hybrid) systems which combine aspects of both main classes of synthetic vectors, i.e., cationic polymers and lipids.
We report the synthesis, DNA binding ability and preliminary gene delivery profiles of dendrons with different amine surface groups, 1,3-diaminopropane (DAP), N,N-di-(3-aminopropyl)-N-(methyl)amine (DAPMA) and spermine (SPM). By using a combination of ethidium bromide displacement, gel electrophoresis and transfection assays, it is shown that the dendrons(More)
This paper develops a structure-activity relationship understanding of the way in which surfactant-like dendrons with hydrophilic spermine surface groups and a variety of lipophilic units at their focal points can self-assemble and subsequently bind to DNA with high affinity. The choice of functional group at the focal point of the dendron and the high(More)
This paper reports the application of molecular dynamics methods to understand the interactions between dendritic molecules with spermine surface groups and double-helical DNA. Importantly, we are able to reproduce the binding effects observed experimentally, indicating that this type of modeling is robust and reliable. The energetic effects were(More)
Protein functionalization constitutes a particularly interesting target for biopharmaceutical applications, which increasingly relies on monodisperse proteinpolymer conjugates having controllable therapeutic properties.[1,2] Proteins modified with precisely controlled polymeric materials have the potential to exhibit a wide range of improved biological(More)
Heparin is a vital biomolecule in widespread clinical use as an anti-coagulant. Heparin sensors have potential applications in the bedside detection of heparin levels in human blood during surgery, while high-affinity heparin binders may enable the development of effective heparin reversal agents for use in patients once surgery is complete. However, human(More)
We report the simple synthesis and full investigation of a novel heparin binding dye, mallard blue, an arginine-functionalized thionine. This dye binds heparin in highly competitive media, including water with high levels of competitive electrolyte, buffered aqueous solution and human serum. The dye reports on heparin levels by a significant change in its(More)