David K. Chalmers

Learn More
We have used virtual screening to develop models for the binding of aryl substituted heterocycles to p38α MAPK. Virtual screening was conducted on a number of p38α MAPK crystal structures using a library of 46 known p38α MAPK inhibitors containing a heterocyclic core substituted by pyridine and fluorophenyl rings (structurally related to SB203580) and a set(More)
We report the development of homology models of dopamine (D(2), D(3), and D(4)), serotonin (5-HT(1B), 5-HT(2A), 5-HT(2B), and 5-HT(2C)), histamine (H(1)), and muscarinic (M(1)) receptors, based on the high-resolution structure of the beta(2)-adrenergic receptor. The homology models were built and refined using Prime. We have addressed the required modeling(More)
While the general features of HIV-1 integrase function are understood, there is still uncertainty about the composition of the integration complex and how integrase interacts with viral and host DNA. We propose an improved model of the integration complex based on current experimental evidence including a comparison with the homologous Tn5 transposase(More)
A series of synthesized and commercially available compounds were assessed against PI3Kα for in vitro inhibitory activity and the results compared to binding calculated in silico. Using published crystal structures of PI3Kγ and PI3Kδ co-crystallized with inhibitors as a template, docking was able to identify the majority of potent inhibitors from a decoy(More)
We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate(More)
Much of contemporary experimental philosophy involves taking surveys of 'folk' subjects to test their intuitions involving philosophically relevant concepts. The results of these surveys are often claimed to be surprising, and treated as evidence that the relevant folk intuitions cannot be predicted from the 'armchair'. We conducted an experiment to test(More)
Little is known about the microstructure of lipid-based formulations, or how their structure changes as they disperse in the lumen of the gastrointestinal tract. We used molecular dynamics (MD) simulation to study such formulations at the molecular level as they interact with water during dispersion. We studied a simple lipid formulation, by itself and in(More)
Structure-based virtual screening offers a good opportunity for the discovery of selective M1 muscarinic acetylcholine receptor (mAChR) agonists for the treatment of Alzheimer's disease. However, no 3-D structure of an M1 mAChR is yet available and the homology models that have been previously reported are only able to identify antagonists in virtual(More)
The binding of a small molecule ligand to its protein target is most often characterized by binding affinity and is typically viewed as an on/off switch. The more complex reality is that binding involves the ligand passing through a series of intermediate states between the solution phase and the fully bound pose. We have performed a set of 29 unbiased(More)
p38α mitogen-activated protein kinase (MAPK) plays a role in several cellular processes and consequently has been a therapeutic target in inflammatory diseases, cancer, and cardiovascular disease. A number of known p38α MAPK inhibitors contain vicinal 4-fluorophenyl/4-pyridyl rings connected to either a 5- or 6-membered heterocycle. In this study, a small(More)