David Jarriault

Learn More
To find a mating partner, moths rely on pheromone communication. Released in very low amounts, female sex pheromones are used by males to identify and localize females. Depending on the physiological state (i.e. age, reproductive state), the olfactory system of the males of the noctuid moth Agrotis ipsilon is 'switched on or off'. To understand the neural(More)
Innate behaviours in animals can be influenced by several factors, such as the environment, experience, or physiological status. This behavioural plasticity originates from changes in the underlying neuronal substrate. A well-described form of plasticity is induced by mating. In both vertebrates and invertebrates, males experience a post-ejaculatory(More)
How information is transformed along synaptic processing stages is critically important to understand the neural basis of behavior in any sensory system. In moths, males rely on sex pheromone to find their mating partner. It is essential for a male to recognize the components present in a pheromone blend, their ratio, and the temporal pattern of the signal.(More)
In the olfactory system of male moths, a specialized subset of neurons detects and processes the main component of the sex pheromone emitted by females. It is composed of several thousand first-order olfactory receptor neurons (ORNs), all expressing the same pheromone receptor, that contact synaptically a few tens of second-order projection neurons (PNs)(More)
In the male moth, Agrotis ipsilon, mating induces a transient inhibition of behavioural and central nervous responses to sex pheromone. Newly mated males are not attracted to sex pheromone, and the sensitivity of their antennal lobe (AL) neurons is lower than in virgin males. This rapid transient olfactory inhibition prevents them from re-mating(More)
Male moths use sex pheromones to find their mating partners. In the moth, Agrotis ipsilon, the behavioral response and the neuron sensitivity within the primary olfactory centre, the antennal lobe (AL), to sex pheromone increase with age and juvenile hormone (JH) biosynthesis. By manipulating the JH level, we previously showed that JH controls this(More)
  • 1