Learn More
Tibetans have lived at very high altitudes for thousands of years, and they have a distinctive suite of physiological traits that enable them to tolerate environmental hypoxia. These phenotypes are clearly the result of adaptation to this environment, but their genetic basis remains unknown. We report genome-wide scans that reveal positive selection in(More)
The proportion of human genetic variation due to differences between populations is modest, and individuals from different populations can be genetically more similar than individuals from the same population. Yet sufficient genetic data can permit accurate classification of individuals into populations. Both findings can be obtained from the same data set,(More)
Alu elements have inserted in primate genomes throughout the evolution of the order. One particular Alu lineage (Ye) began amplifying relatively early in hominid evolution and continued propagating at a low level as many of its members are found in a variety of hominid genomes. This study represents the first conclusive application of short interspersed(More)
TBE1s are "cut-and-paste" transposable elements found in high copy number in the germline genomes of the ciliates Oxytricha fallax and O. trifallax. TBE1 "family" sequence (sequence of mixed polymerase chain reaction products generated using primers that match roughly half the TBE1s in host whole-cell DNA) was obtained from both host species. Although(More)
Internal eliminated sequences (IESs) often interrupt ciliate genes in the silent germline nucleus but are exactly excised and eliminated from the developing somatic nucleus from which genes are then expressed. Some long IESs are transposons, supporting the hypothesis that short IESs are ancient transposon relics. In light of that hypothesis and to explore(More)
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful(More)
BACKGROUND Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations. RESULTS We report new data on 155 individuals from four Tamil caste(More)
We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe,(More)
BACKGROUND Recombination rates vary widely across the human genome, but little of that variation is correlated with known DNA sequence features. The genome contains more than one million Alu mobile element insertions, and these insertions have been implicated in non-homologous recombination, modulation of DNA methylation, and transcriptional regulation. If(More)
BACKGROUND/AIMS The L1 retrotransposable element family is the most successful self-replicating genomic parasite of the human genome. L1 elements drive replication of Alu elements, and both have had far-reaching impacts on the human genome. We use L1 and Alu insertion polymorphisms to analyze human population structure. METHODS We genotyped 75 recent,(More)