Learn More
We have obtained evidence that poliovirus and other picornavirus particles are specifically modified by having myristic acid covalently bound to a capsid protein. The electron density map of poliovirus confirms the position of the myristate molecule and defines its location in the virus particle. Analogies with other myristylated proteins suggest that the(More)
The structure of foot-and-mouth disease virus has been determined at close to atomic resolution by X-ray diffraction without experimental phase information. The virus shows similarities with other picornaviruses but also several unique features. The canyon or pit found in other picornaviruses is absent; this has important implications for cell attachment.(More)
The amino acid sequence RGD (arginine-glycine-aspartic acid) is highly conserved in the VP1 protein of foot-and-mouth disease virus (FMDV), despite being situated in the immunodominant hypervariable region between amino acids 135 and 160. RGD-containing proteins are known to be important in promoting cell attachment in several different systems, and we(More)
Study of the immune response to synthetic antigens has shown that uncoupled peptides can realize their potential as vaccines only if they contain domains that react with helper T-cell receptors and Ia antigens in addition to antibody binding sites. Here we consider whether genetically restricted non-responsiveness to an uncoupled peptide could be overcome(More)
One of the difficulties in controlling foot and mouth disease by vaccination is the occurrence of the virus as seven distinct serotypes because immunity conferred by vaccination against one serotype leaves the animals susceptible to infection by the other six. Moreover, the antigenic variation, even within a serotype, can be so great that immunity against(More)
UNLABELLED Current interferon-based therapy for hepatitis C virus (HCV) infection is inadequate, prompting a shift toward combinations of direct-acting antivirals (DAA) with the first protease-targeted drugs licensed in 2012. Many compounds are in the pipeline yet primarily target only three viral proteins, namely, NS3/4A protease, NS5B polymerase, and(More)
Enterovirus 71 (EV71) is a major agent of hand, foot and mouth disease in children that can cause severe central nervous system disease and death. No vaccine or antiviral therapy is available. High-resolution structural analysis of the mature virus and natural empty particles shows that the mature virus is structurally similar to other enteroviruses. In(More)
Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group)(More)
The hepatitis C virus (HCV) p7 protein is critical for virus production and an attractive antiviral target. p7 is an ion channel when reconstituted in artificial lipid bilayers, but channel function has not been demonstrated in vivo and it is unknown whether p7 channel activity plays a critical role in virus production. To evaluate the contribution of p7 to(More)