#### Filter Results:

- Full text PDF available (12)

#### Publication Year

2000

2016

- This year (0)
- Last 5 years (9)
- Last 10 years (13)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- David J. Rosenbaum
- TQC
- 2013

We show that the depth of quantum circuits in the realistic architecture where a classical controller determines which local interactions to apply on the kD grid Z where k ≥ 2 is the same (up to a constant factor) as in the standard model where arbitrary interactions are allowed. This allows minimum-depth circuits (up to a constant factor) for the… (More)

- David J. Rosenbaum, Marek A. Perkowski
- ISMVL
- 2008

- David J. Rosenbaum, Marek A. Perkowski
- ISMVL
- 2009

This paper presents a new quantum array that can be used to control a single-qudit hermitian operator for an odd radix r > 2 by n controls using Θ ( n2 r+2 ) single-qudit controlled gates with one control and no ancilla qudits. This quantum array is more practical than existing quantum arrays of the same complexity because it does not require the use of… (More)

- David J. Rosenbaum, Fabian Wagner
- Theor. Comput. Sci.
- 2015

We consider the group isomorphism problem: given two finite groups G and H specified by their multiplication tables, decide if G ∼= H . For several decades, the np n+O(1) generatorenumeration bound (where p is the smallest prime dividing the order of the group) has been the best worst-case result for general groups. In this work, we show the first… (More)

- David J. Rosenbaum
- ArXiv
- 2013

In this work, we introduce bidirectional collision detection — a new algorithmic tool that applies to the collision problems that arise in many isomorphism problems. For the group isomorphism problem, we show that bidirectional collision detection yields a deterministic n logn+O(1) time algorithm whereas previously the n generator-enumeration algorithm was… (More)

- David J. Rosenbaum
- SODA
- 2013

We consider the group isomorphism problem: given two finite groups G and H specified by their multiplication tables, decide if G ∼= H. The n barrier for group isomorphism has withstood all attacks — even for the special cases of p-groups and solvable groups — ever since the n generator-enumeration algorithm. Following a framework due to Wagner, we present… (More)

- Daniel J. Merenstein, Frank Damico, +4 authors David J. Rosenbaum
- Family medicine
- 2001

BACKGROUND AND OBJECTIVES
Continuity of care is one of the presumed advantages of longitudinal residencies. However, it is not clear how well such residencies provide continuity of care, and, further, there is no recognized acceptable rate of good continuity. We compared traditional and longitudinal residencies to determine the extent to which the residents… (More)

Extended Superposed Quantum State Initialization Using Disjoint Prime Implicants (ESQUID) is a new algorithm for generating quantum arrays for the purpose of initializing a desired quantum superposition. The quantum arrays generated by this algorithm almost always use fewer gates than other algorithms and in the worst case use the same number of gates.… (More)

- Aram Wettroth Harrow, David J. Rosenbaum
- Quantum Information & Computation
- 2014

We consider a generalization of the standard oracle model in which the oracle acts on the target with a permutation which is selected according to internal random coins. We show new exponential quantum speedups which may be obtained over classical algorithms in this oracle model. Even stronger, we describe several problems which are impossible to solve… (More)

- David J. Rosenbaum
- ArXiv
- 2014

We consider the isomorphism problem for groups specified by their multiplication tables. Until recently, the best published bound for the worst-case was achieved by the np n+O(1) generator-enumeration algorithm. In previous work with Fabian Wagner, we showed an n logp n+O(logn/ log logn) time algorithm for testing isomorphism of p-groups by building graphs… (More)