Learn More
Stem cell fate is influenced by a number of factors and interactions that require robust control for safe and effective regeneration of functional tissue. Coordinated interactions with soluble factors, other cells, and extracellular matrices define a local biochemical and mechanical niche with complex and dynamic regulation that stem cells sense.(More)
Physical stimuli play critical roles in the development, regeneration, and pathology of many mesenchymal tissues, most notably bone. While mature bone cells, such as osteoblasts and osteocytes, are clearly involved in these processes, the role of their progenitors in mechanically mediated tissue responses is unknown. In this study, we investigated the(More)
Lymph node stromal cells (LNSCs) closely regulate immunity and self-tolerance, yet key aspects of their biology remain poorly elucidated. Here, comparative transcriptomic analyses of mouse LNSC subsets demonstrated the expression of important immune mediators, growth factors and previously unknown structural components. Pairwise analyses of ligands and(More)
Embryonic skeletogenesis involves proliferation, condensation and subsequent chondrogenic differentiation of mesenchymal precursor cells, and the strains and stresses inherent to these processes have been hypothesized to influence skeletal development. The aim of this study was to determine the effect of growth-mimicking strain on the process of early(More)
Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of(More)
Stem cells sense and respond to the mechanical properties of the extracellular matrix. However, both the extent to which extracellular-matrix mechanics affect stem-cell fate in three-dimensional microenvironments and the underlying biophysical mechanisms are unclear. We demonstrate that the commitment of mesenchymal stem-cell populations changes in response(More)
Microenvironmental conditions control tumorigenesis and biomimetic culture systems that allow for in vitro and in vivo tumor modeling may greatly aid studies of cancer cells' dependency on these conditions. We engineered three-dimensional (3D) human tumor models using carcinoma cells in polymeric scaffolds that recreated microenvironmental characteristics(More)
Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static(More)
Tissue engineering may provide an alternative to organ and tissue transplantation, both of which suffer from a limitation of supply. Cell transplantation using biodegradable synthetic extracellular matrices offers the possibility of creating completely natural new tissues and so replacing lost or malfunctioning organs or tissues. Synthetic extracellular(More)