Learn More
Flagellin glycosylation is a necessary modification allowing flagellar assembly, bacterial motility, colonization, and hence virulence for the gastrointestinal pathogen Helicobacter pylori [Josenhans, C., Vossebein, L., Friedrich, S., and Suerbaum, S. (2002) FEMS Microbiol. Lett., 210, 165-172; Schirm, M., Schoenhofen, I.C., Logan, S.M., Waldron, K.C., and(More)
Our focus of interest is in the integration of programming languages and database management systems. In particular, the integration of type systems and data models is considered. One tension in this integration occurs when a type system with subtype inheritance is combined with a data model which contains mutable values. A description of some well-known(More)
The lipopolysaccharide of Pseudomonas aeruginosa PAO1 contains an unusual sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid (d-ManNAc3NAcA). wbpB, wbpE, and wbpD are thought to encode oxidase, transaminase, and N-acetyltransferase enzymes. To characterize their functions, recombinant proteins were overexpressed and purified from heterologous hosts.(More)
In this study we investigated the commonality and biosynthesis of the O-methyl phosphoramidate (MeOPN) group found on the capsular polysaccharide (CPS) of Campylobacter jejuni. High resolution magic angle spinning NMR spectroscopy was used as a rapid, high throughput means to examine multiple isolates, analyze the cecal contents of colonized chickens, and(More)
N-Glycosylation of proteins is recognized as one of the most common posttranslational modifications in eukaryotes. To date, most glycomics techniques are limited to examining eukaryotic pathways. Technologies capable of characterizing newly described N-linked glycosylation systems in bacteria from biologically relevant samples in an accurate, rapid, and(More)
Helicobacter pylori and Campylobacter jejuni have been shown to modify their flagellins with pseudaminic acid (Pse), via O-linkage, while C. jejuni also possesses a general protein glycosylation pathway (Pgl) responsible for the N-linked modification of at least 30 proteins with a heptasaccharide containing(More)
Glycosylation of Campylobacter flagellin is required for the biogenesis of a functional flagella filament. Recently, we used a targeted metabolomics approach using mass spectrometry and NMR to identify changes in the metabolic profile of wild type and mutants in the flagellar glycosylation locus, characterize novel metabolites, and assign function to genes(More)
Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in(More)
Bacterial genome sequencing has provided a wealth of genetic data. However, the definitive functional characterization of hypothetical open reading frames and novel biosynthetic genes remains challenging. This is particularly true for genes involved in protein glycosylation because the isolation of their glycan moieties is often problematic. We have(More)
The food-borne pathogen Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide and the most frequent antecedent in neuropathies such as the Guillain-Barré and Miller Fisher syndromes. C. jejuni was demonstrated to possess an N-linked protein glycosylation pathway that adds a conserved heptasaccharide to >40 periplasmic and(More)