Learn More
Transposable elements of the mariner family are widespread among insects and other invertebrates, and initial analyses of their relationships indicated frequent occurrence of horizontal transfers between hosts. A specific PCR assay was used to screen for additional members of the irritans subfamily of mariners in more than 400 arthropod species.(More)
Mariner family transposable elements are widespread in animals, but their regulation is poorly understood, partly because only two are known to be functional. These are particular copies of the Dmmar1 element from Drosophila mauritiana, for example, Mos1, and the consensus sequence of the Himar1 element from the horn fly, Haematobia irritans. An in vitro(More)
We report the isolation and sequencing of genomic copies of mariner transposons involved in recent horizontal transfers into the genomes of the European earwig, Forficula auricularia; the European honey bee, Apis mellifera; the Mediterranean fruit fly, Ceratitis capitata; and a blister beetle, Epicauta funebris, insects from four different orders. These(More)
Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here(More)
A cell surface protein (3B11) is differentially expressed in the embryonic labial segment of Manduca as two circular monolayers of epithelial cells invaginate and segregate from surrounding epithelial cells. The cells that invaginate and preferentially express 3B11 represent the presumptive prothoracic glands. These cells continue to express protein 3B11 as(More)
Mariner transposons belong to the mariner /Tc1 superfamily of class II, DNA-mediated elements. One of these transposons, Himar1 , isolated from the horn fly, is independent of host-specific factors that would limit transfer between different species, making it an ideal candidate for gene transfer technology development. To determine the activity of Himar1(More)
Asaia spp. are abundant members of the microbiota of Anopheles mosquitoes, the principle vectors of malaria. Here, we report the draft genome sequence of Asaia sp. strain SF2.1. This strain is under development as a platform to deliver antimalarial peptides and proteins to adult female Anopheles mosquitoes.
Novel interventions are needed to prevent the transmission of the Plasmodium parasites that cause malaria. One possible method is to supply mosquitoes with antiplasmodial effector proteins from bacteria by paratransgenesis. Mosquitoes have a diverse complement of midgut microbiota including the Gram-negative bacteria Asaia bogorensis. This study presents(More)
constitute the researcher team primarily responsible for developing the survey and analyzing the first year (four quarterly samples) of data. Special thanks go to Patrick Shields of ISR, who helped conceptualize the survey, played a crucial role in its development and execution, and provided invaluable input, guidance and encouragement throughout the(More)
DNA transposons are mobile elements with the ability to mobilize and transport genetic information between different chromosomal loci. Unfortunately, most transposons copies are currently inactivated, little is known about mariner elements in humans despite their role in the evolution of the human genome, even though the Hsmar2 transposon is associated to(More)
  • 1