David J. Lampe

Learn More
Mariners are a widespread and diverse family of animal transposons. Extremely similar mariners of the irritans subfamily are present in the genomes of three divergent insect host species, which strongly suggests that species-specific host factors are unnecessary for mobility. We tested this hypothesis by examining the activity of a purified transposase from(More)
Mariner family transposable elements are widespread in animals, but their regulation is poorly understood, partly because only two are known to be functional. These are particular copies of the Dmmar1 element from Drosophila mauritiana, for example, Mos1, and the consensus sequence of the Himar1 element from the horn fly, Haematobia irritans. An in vitro(More)
Transposable elements of the mariner family are widespread among insects and other invertebrates, and initial analyses of their relationships indicated frequent occurrence of horizontal transfers between hosts. A specific PCR assay was used to screen for additional members of the irritans subfamily of mariners in more than 400 arthropod species.(More)
Mariner-family transposable elements are active in a wide variety of organisms and are becoming increasingly important genetic tools in species lacking sophisticated genetics. The Himar1 element, isolated from the horn fly, Haematobia irritans, is active in Escherichia coli when expressed appropriately. We used this fact to devise a genetic screen for(More)
The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A(More)
Filamentous fungi are a large group of diverse and economically important microorganisms. Large-scale gene disruption strategies developed in budding yeast are not applicable to these organisms because of their larger genomes and lower rate of targeted integration (TI) during transformation. We developed transposon-arrayed gene knockouts (TAGKO) to discover(More)
Transposons of the mariner family are widespread in animal genomes and have apparently infected them by horizontal transfer. Most species carry only old defective copies of particular mariner transposons that have diverged greatly from their active horizontally transferred ancestor, while a few contain young, very similar, and active copies. We report here(More)
We report the isolation and sequencing of genomic copies of mariner transposons involved in recent horizontal transfers into the genomes of the European earwig, Forficula auricularia; the European honey bee, Apis mellifera; the Mediterranean fruit fly, Ceratitis capitata; and a blister beetle, Epicauta funebris, insects from four different orders. These(More)
The mariner family is probably the most widely distributed family of transposons in nature. Although these transposons are related to the well-studied bacterial insertion elements, there is evidence for major differences in their reaction mechanisms. We report the identification and characterization of complexes that contain the Himar1 transposase bound to(More)
Bacteria capable of colonizing mosquito midguts are attractive vehicles for delivering anti-malaria molecules. We genetically engineered Escherichia coli to display two anti-Plasmodium effector molecules, SM1 and phospholipase-A(2), on their outer membrane. Both molecules significantly inhibited Plasmodium berghei development when engineered bacteria were(More)