David J Gosztola

Learn More
The peripheral accessory chlorophylls (Chls) of the photosystem II (PSII) reaction center (RC) are coordinated by a pair of symmetry-related histidine residues (D1-H118 and D2-H117). These Chls participate in energy transfer from the proximal antennae complexes (CP43 and CP47) to the RC core chromophores. In addition, one or both of the peripheral Chls are(More)
All-optical signal processing enables modulation and transmission speeds not achievable using electronics alone. However, its practical applications are limited by the inherently weak nonlinear effects that govern photon-photon interactions in conventional materials, particularly at high switching rates. Here, we show that the recently discovered nonlocal(More)
The excited state dynamics in polycrystalline thin films of tetracene are studied using both picosecond fluorescence and femtosecond transient absorption. The solid-state results are compared with those obtained for monomeric tetracene in dilute solution. The room temperature solid-state fluorescence decays are consistent with earlier models that take into(More)
The determination of the structure of transient molecules, such as photoexcited states, in disordered media (such as in solution) usually requires methods with high temporal resolution. The transient molecular structure of a reaction intermediate produced by photoexcitation of NiTPP-L2 (NiTPP, nickeltetraphenylporphyrin; L, piperidine) in solution was(More)
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse(More)
The excited state dynamics of polycrystalline tetracene films are studied using femtosecond transient absorption in combination with picosecond fluorescence, continuing work reported in an earlier paper [J. J. Burdett, A. M. Muller, D. Gosztola, and C. J. Bardeen, J. Chem. Phys. 133, 144506 (2010)]. A study of the intensity dependence of the singlet state(More)
Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a nanoscale(More)
An electron donor-acceptor-donor molecule consisting of two porphyrin donors rigidly attached to the two-electron acceptor N,N'-diphenyl-3,4,9,10-perylenebis(dicarboximide) acts as a light intensity-dependent molecular switch on a picosecond time scale. Excitation of the porphyrins within this molecule with subpicosecond laser pulses results in single or(More)
  • 1