David J. Giesen

Learn More
A highly emissive bis(phosphine)diarylamido dinuclear copper(I) complex (quantum yield = 57%) was shown to exhibit E-type delayed fluorescence by variable temperature emission spectroscopy and photoluminescence decay measurement of doped vapor-deposited films. The lowest energy singlet and triplet excited states were assigned as charge transfer states on(More)
We propose a new criterion for defining partial charges on atoms in molecules, namely that physical observables calculated from those partial charges should be as accurate as possible. We also propose a method to obtain such charges based on a mapping from approximate electronic wave functions. The method is illustrated by parameterizing two new charge(More)
The three-dimensional structure, conformation, and packing of molecules in the solid state are crucial components used in the optimization of many technologically useful materials properties. Single-crystal X-ray diffraction is the traditional and most effective method of determining 3-D structures in the solid state. Obtaining single crystals that are(More)
A new class of coumarin-based iridium tris-cyclometalated complexes has been developed. These complexes are highly emissive, with emission colors ranging from green to orange-red. Besides modification of ligand structures, color tuning was realized by incorporation of ligands with different electrochemical properties in a heteroleptic structure. The organic(More)
The structure, bonding, and energetic properties of the N(2)-BH(3) complex are reported as characterized by density functional theory (DFT) and post-Hartree-Fock (HF) calculations. The equilibrium structure of the complex exhibits a short B-N distance near 1.6 A, comparable to that of a strong acid-base complex like H(3)N-BH(3). However, the binding energy(More)
Condensed-phase effects on the structure and bonding of C(6)H(5)CN-BF(3) and (CH(3))(3)CCN-BF(3) are illustrated by a variety of results, and these are compared to analogous data for the closely related complex CH(3)CN-BF(3). For the most part, the structural properties of C(6)H(5)CN-BF(3) and (CH(3))(3)CCN-BF(3) are quite similar, not only in the gas phase(More)
Virtual screening involves the generation of structure libraries, automated analysis to predict properties related to application performance and subsequent screening to identify lead systems and estimate critical structure–property limits across a targeted chemical design space. This approach holds great promise for informing experimental discovery and(More)
  • 1