Learn More
Recent studies suggest that normal-hearing listeners maintain robust speech intelligibility despite severe degradations of amplitude-modulation (AM) cues, by using temporal-envelope information recovered from broadband frequency-modulation (FM) speech cues at the output of cochlear filters. This study aimed to assess whether cochlear damage affects this(More)
Emerging evidence from neuroimaging and neuropsychology suggests that human speech comprehension engages two types of neurocognitive processes: a distributed bilateral system underpinning general perceptual and cognitive processing, viewed as neurobiologically primary, and a more specialized left hemisphere system supporting key grammatical language(More)
The length of the vocal tract is correlated with speaker size and, so, speech sounds have information about the size of the speaker in a form that is interpretable by the listener. A wide range of different vocal tract lengths exist in the population and humans are able to distinguish speaker size from the speech. Smith et al. [J. Acoust. Soc. Am. 117,(More)
The size of a resonant source can be estimated by the acoustic-scale information in the sound [1-3]. Previous studies revealed that posterior superior temporal gyrus (STG) responds to acoustic scale in human speech when it is controlled for spectral-envelope change (unpublished data). Here we investigate whether the STG activity is specific to the(More)
A melodic pitch experiment was performed to demonstrate the importance of time-interval resolution for pitch strength. The experiments show that notes with a low fundamental (75 Hz) and relatively few resolved harmonics support better performance than comparable notes with a higher fundamental (300 Hz) and more resolved harmonics. Two four note melodies(More)
The length of a vocal tract is reflected in the sound it is producing. The length of the vocal tract is correlated with body size and humans are very good at making size judgments based on the acoustic effect of vocal tract length only. Here we investigate the underlying mechanism for processing this main auditory cue to size information in the human brain.(More)
OBJECTIVE This study was designed to examine whether age-related differences in melodic pitch perception may be mediated by temporal processing. Temporal models of pitch suggest that performance will decline as the lowest component of a complex tone increases in frequency, regardless of age. In addition, if there are age-related deficits in temporal(More)
The dichotomy between acoustic temporal envelope (ENV) and fine structure (TFS) cues has stimulated numerous studies over the past decade to understand the relative role of acoustic ENV and TFS in human speech perception. Such acoustic temporal speech cues produce distinct neural discharge patterns at the level of the auditory nerve, yet little is known(More)
The goal of noise reduction (NR) algorithms in digital hearing aid devices is to reduce background noise whilst preserving as much of the original signal as possible. These algorithms may increase the signal-to-noise ratio (SNR) in an ideal case, but they generally fail to improve speech intelligibility. However, due to the complex nature of speech, it is(More)
Location and acoustic scale cues have both been shown to have an effect on the recognition of speech in multi-speaker environments. This study examines the interaction of these variables. Subjects were presented with concurrent triplets of syllables from a target voice and a distracting voice, and asked to recognize a specific target syllable. The task was(More)