Learn More
We present a continuous-flow microfluidic device that enables cell by cell separation of cells selectively tagged with magnetic nanoparticles. The cells flow over an array of microfabricated magnetic stripes, which create a series of high magnetic field gradients that trap the magnetically labeled cells and alter their flow direction. The process was(More)
We show the fractionation of whole blood components and isolation of blood plasma with no dilution by using a continuous-flow deterministic array that separates blood components by their hydrodynamic size, independent of their mass. We use the technology we developed of deterministic arrays which separate white blood cells, red blood cells, and platelets(More)
In this paper, we present a model of how the critical particle size for fractionation depends on the micropost geometry, depending specifically on the gap between posts, the offset of posts in one row with respect to another, and whether the fluid is driven by hydrodynamics or by electroosmosis. In general the critical particle diameter is much smaller than(More)
Joubert syndrome and related diseases (JSRD) are cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy, and nephronophthisis (a cystic kidney disease). Mutations in AHI1 are the most common genetic cause of JSRD, with developmental hindbrain anomalies and retinal degeneration being prominent features. We(More)
We show that it is possible to direct particles entrained in a fluid along trajectories much like rays of light in classical optics. A microstructured, asymmetric post array forms the core hydrodynamic element and is used as a building block to construct microfluidic metamaterials and to demonstrate refractive, focusing, and dispersive pathways for flowing(More)
We present a versatile method for continuous-flow, on-chip biological processing of cells, large bio-particles, and functional beads. Using an asymmetric post array in pressure-driven microfluidic flow, we can move particles of interest across multiple, independent chemical streams, enabling sequential chemical operations. With this method, we demonstrate(More)
Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly(More)
Microfluidic flow cytometers currently analyze far fewer parameters than conventional flow cytometry or fluorescence activated cell sorting (FACS) in order to minimize cost and complexity. There is a need for microfluidic devices that analyze more and or new cell parameters with compact and minimal means. Here we show a new and explicitly microfluidic(More)
In this work we demonstrate a new microfluidic method for the rapid assessment of platelet size and morphology in whole blood. The device continuously fractionates particles according to size by displacing them perpendicularly to the fluid flow direction in a micro-fabricated post array. Whole blood, labeled with the fluorescent, platelet specific, antibody(More)
—Several types of commercial 100-resistors can be used with the cryogenic current comparator to maintain the resistance unit, derived from the quantized Hall effect (QHE), and to disseminate this unit to laboratory resistance standards. Up until now, the transport behavior of these resistors has not been investigated. Such an investigation is of importance(More)