Learn More
Θ k-graphs are geometric graphs that appear in the context of graph navigation. The shortest-path metric of these graphs is known to approximate the Euclidean complete graph up to a factor depending on the cone number k and the dimension of the space. TD-Delaunay graphs, a.k.a. triangular-distance Delaunay triangulations introduced by Chew, have been shown(More)
We consider the problem of exploring an anonymous unoriented ring by a team of k identical, oblivious, asynchronous mobile robots that can view the environment but cannot communicate. This weak scenario is standard when the spatial universe in which the robots operate is the two-dimensional plane, but (with one exception) has not been investigated before(More)
A finite automaton, simply referred to as a <i>robot</i>, has to explore a graph, that is, visit all the nodes of the graph. The robot has no a priori knowledge of the topology of the graph, nor of its size. It is known that for any <i>k</i>-state robot, there exists a graph of maximum degree 3 that the robot cannot explore. This article considers the(More)
We consider the problem of exploring an anonymous undirected graph using an oblivious robot. The studied exploration strategies are designed so that the next edge in the robot's walk is chosen using only local information, and so that some local equity (fairness) criterion is satisfied for the adjacent undirected edges. Such strategies can be seen as an(More)
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion(More)
We study the problem of the amount of information (advice) about a graph that must be given to its nodes in order to achieve fast distributed computations. The required size of the advice enables to measure the information sensitivity of a network problem. A problem is information sensitive if little advice is enough to solve the problem rapidly (i.e., much(More)
In the effort to understand the algorithmic limitations of computing by a swarm of robots, the research has focused on the minimal capabilities that allow a problem to be solved. The weakest of the commonly used models is Asynch where the autonomous mobile robots, endowed with visibility sensors (but otherwise unable to communicate), operate in(More)
Two anonymous mobile agents (robots) moving in an asyn-chronous manner have to meet in an infinite grid of dimension δ > 0, starting from two arbitrary positions at distance at most d. Since the problem is clearly infeasible in such general setting, we assume that the grid is embedded in a δ-dimensional Euclidean space and that each agent knows the(More)