David I. Shreiber

Learn More
A finite element model of cerebral contusion in the rat was developed and compared to experimental injury maps demonstrating blood-brain barrier (BBB) breakdown. The model was exercised at the nine unique loading conditions used experimentally. Logistic regressions of four variables, maximum principal logarithmic strain (LEP), maximum principal stress (SP),(More)
The purpose of this paper is to present results from methodologies used in our laboratory that are targeted toward identifying specific brain injury thresholds. Results from studying one form of brain injury, diffuse axonal injury, are presented in this report. Physical models, or surrogates, of the skull-brain complex are used to estimate the relationship(More)
We used a new approach, termed dynamic cortical deformation (DCD), to study the neuronal, vascular, and glial responses that occur in focal cerebral contusions. DCD produces experimental contusion by rapidly deforming the cerebral cortex with a transient, nonablative vacuum pulse of short duration (25 milliseconds) to mimic the circumstances of traumatic(More)
Primary damage to the blood-spinal cord barrier (BSCB) is a nearly universal consequence of spinal cord injury that contributes significantly to the overall pathology, including the introduction of reactive species that induce cytotoxicity as well as secondary insults on the BSCB itself. We have characterized quantitatively the extent and severity of(More)
A three-dimensional (3D) finite element model (FEM) that simulates the Impactor weight-drop experimental model of traumatic spinal cord injury (SCI) was developed. The model consists of the rat spinal cord, with distinct element sets for the gray and white matter, the cerebrospinal fluid (CSF), the dura mater, a rigid rat spinal column, and a rigid(More)
Current models used in our laboratory to assess the migration and traction of a population of cells within biopolymer gels are extended to investigate temporal changes in these parameters during compaction of mechanically constrained gels. The random cell migration coefficient, micro (t) is calculated using a windowing technique by regressing the(More)
The dura mater is the outermost and most substantial meningial layer of central nervous system (CNS) tissue that acts as a protective membrane for the brain and spinal cord. In animal models of traumatic brain injury and spinal cord injury, mechanical insults are often delivered directly to the dura to injure the underlying tissue. As such, including a(More)
The lack of practicable nonlinear elastic contact models frequently compels the inappropriate use of Hertzian models in analyzing indentation data and likely contributes to inconsistencies associated with the results of biological atomic force microscopy measurements. We derived and validated with the aid of the finite element method force-indentation(More)
Controlled crosslinking of collagen gels has important applications in cell and tissue mechanics as well as tissue engineering. Genipin is a natural plant extract that has been shown to crosslink biological tissues and to produce color and fluorescence changes upon crosslinking. We have characterized the effects of genipin concentration and incubation(More)
The dose-response effects of platelet-derived growth factor BB (PDGF-BB) on rat dermal fibroblast (RDF) behavior in mechanically stressed and unstressed type I collagen and fibrin were investigated using quantitative assays developed in our laboratory. In chemotaxis experiments, RDFs responded optimally (P < 0.05) to a gradient of 10 ng/ml PDGF-BB in both(More)