David Herbert Pashley

Learn More
Self-etch adhesives that etch, prime, and bond simultaneously should not exhibit incomplete resin infiltration within hybrid layers. We hypothesized that nanoleakage patterns in these systems are artifacts caused by mineral dissolution in mildly acidic silver nitrate. Resin-dentin interfaces bonded with four single-step, self-etch adhesives were examined(More)
The recent paradigm that endogenous collagenolytic and gelatinolytic activities derived from acid-etched dentin result in degradation of hybrid layers requires in vivo validation. This study tested the null hypothesis that there is no difference between the degradation of dentin bonded with an etch-and-rinse adhesive and that in conjunction with(More)
Biomineralisation is a well-regulated process mediated by extracellular matrix proteins. Biomimetic remineralisation strategies should reproduce the dimension and structural hierarchy of apatite deposits within a demineralised collagen matrix. Interfibrillar and intrafibrillar remineralisation of phosphoric acid-etched human dentine was demonstrated in this(More)
The rapid improvement of the white light efficacy achievable with light-emitting diodes (LEDs) opens up new opportunities in the general illumination market. An LED light source made of red, green, and blue LEDs (RGB-LEDs) can provide the unique feature of color variability, allowing the user to select the desired color point of the lamp. The white light(More)
OBJECTIVES The aim of this study was to explore the therapeutic opportunities of each step of 3-step etch-and-rinse adhesives. METHODS Etch-and-rinse adhesive systems are the oldest of the multi-generation evolution of resin bonding systems. In the 3-step version, they involve acid-etching, priming and application of a separate adhesive. Each step can(More)
Incompletely infiltrated collagen fibrils in acid-etched dentin are susceptible to degradation. We hypothesize that degradation can occur in the absence of bacteria. Partially demineralized collagen matrices (DCMs) prepared from human dentin were stored in artificial saliva. Control specimens were stored in artificial saliva containing proteolytic enzyme(More)
Host-derived proteases have been reported to degrade the collagen matrix of incompletely-resin-infiltrated dentin. This study tested the hypothesis that interfacial degradation of resin-dentin bonds may be prevented or delayed by the application of chlorhexidine (CHX), a matrix metalloproteinase inhibitor, to dentin after phosphoric acid-etching.(More)
The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data(More)
The bioactivity of mineral trioxide aggregate (MTA) has been attributed to its ability to produce hydroxyapatite in the presence of phosphate-containing fluids. It is known that stoichiometric hydroxyapatites do not exist in biological systems and do not contribute to the osteogenic potential of calcium phosphate-based biomaterials. Because Portland cement(More)