Learn More
The histone-modifying complexes PRC2 and TrxG/MLL play pivotal roles in determining the activation state of genes controlling pluripotency, lineage commitment, and cell differentiation. Long noncoding RNAs (lncRNAs) can bind to either complex, and some have been shown to act as modulators of PRC2 or TrxG/MLL activity. Here we show that the lateral(More)
RNA Polymerase II (Pol II) is bound to the promoter regions of many or most developmental control genes before their activation during Drosophila embryogenesis. It has been suggested that Pol II stalling is used to produce dynamic and rapid responses of developmental patterning genes to transient cues such as extracellular signaling molecules. Here, we(More)
The 3' termini of eukaryotic mRNAs influence transcript stability, translation efficiency, and subcellular localization. Here we report that a subset of developmental regulatory genes, enriched in critical RNA-processing factors, exhibits synchronous lengthening of their 3' UTRs during embryogenesis. The resulting UTRs are up to 20-fold longer than those(More)
The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least(More)
The dorsal-ventral patterning of the Drosophila embryo is controlled by Dorsal, a sequence-specific transcription factor that is related to mammalian NF-κB. Previous ChIP-chip assays predicted that as many as a third or even half of all Dorsal target genes contain multiple enhancers for the same or similar expression pattern. Here we show that some of these(More)
MicroRNA-based RNA interference is commonly used to produce loss-of-function phenotypes in mammalian systems, but is used only sparingly in invertebrates such as Caenorhabditis elegans and Drosophila melanogaster. Here, we evaluate this method in transgenic strains of D. melanogaster and cultured S2 cells. High throughput-ready expression vectors were(More)
Gradients of extracellular signaling molecules and transcription factors are used in a variety of developmental processes, including the patterning of the Drosophila embryo, the establishment of diverse neuronal cell types in the vertebrate neural tube, and the anterior-posterior patterning of vertebrate limbs. Here, we discuss how a gradient of the(More)
MicroRNAs (miRNAs) have been implicated in various cellular processes. They are thought to function primarily as inhibitors of gene activity by attenuating translation or promoting mRNA degradation. A typical miRNA gene produces a predominant approximately 21-nucleotide (nt) RNA (the miRNA) along with a less abundant miRNA(*) product. We sought to identify(More)
MicroRNAs (miRs) have been broadly implicated in animal development and disease. We developed a novel computational strategy for the systematic, whole-genome identification of miRs from high throughput sequencing information. This method, miRTRAP, incorporates the mechanisms of miR biogenesis and includes additional criteria regarding the prevalence and(More)
Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the(More)