David Hartich

Learn More
For a general sensory system following an external stochastic signal, we introduce the sensory capacity. This quantity characterizes the performance of a sensor: sensory capacity is maximal if the instantaneous state of the sensor has as much information about a signal as the whole time series of the sensor. We show that adding a memory to the sensor(More)
For a paradigmatic model of chemotaxis, we analyze the effect how a nonzero affinity driving receptors out of equilibrium affects sensitivity. This affinity arises whenever changes in receptor activity involve ATP hydrolysis. The sensitivity integrated over a ligand concentration range is shown to be enhanced by the affinity, providing a measure of how much(More)
The 70 kDa heat shock protein Hsp70 has several essential functions in living systems, such as protecting cells against protein aggregation, assisting protein folding, remodeling protein complexes, and driving translocation into organelles. These functions require high affinity for nonspecific amino acid sequences that are ubiquitous in proteins. It has(More)
We study the information loss of a class of inference strategies that is solely based on time averaging. For an array of independent binary sensors (e.g., receptors, single electron transistors) measuring a weak random signal (e.g., ligand concentration, gate voltage) this information loss is up to 0.5  bit per measurement irrespective of the number of(More)
  • 1