Learn More
This study examines the ability of neurons to track temporally varying inputs, namely by investigating how the instantaneous firing rate of a neuron is modulated by a noisy input with a small sinusoidal component with frequency (f). Using numerical simulations of conductance-based neurons and analytical calculations of one-variable nonlinear(More)
Synchronization properties of fully connected networks of identical oscillatory neurons are studied, assuming purely excitatory interactions. We analyze their dependence on the time course of the synaptic interaction and on the response of the neurons to small depolarizations. Two types of responses are distinguished. In the first type, neurons always(More)
It is shown that very small time steps are required to reproduce correctly the synchronization properties of large networks of integrate-and-fire neurons when the differential system describing their dynamics is integrated with the standard Euler or second-order Runge-Kutta algorithms. The reason for that behavior is analyzed, and a simple improvement of(More)
The width of the orientation tuning curves of the spike response of neurons in V1 is invariant to contrast. This property constrains the possible mechanisms underlying orientation selectivity. It has been suggested that noise circumvents the iceberg effect that would prevent contrast invariance in the purely feedforward mechanism. Here we investigate(More)
High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapeutic approach for the treatment of late-stage Parkinson's disease. Although the underlying cause of this illness remains a mystery, changes in firing rate and synchronized activity in different basal ganglia nuclei have been related to its symptoms. Here we(More)
Electrical synapses are ubiquitous in the mammalian CNS. Particularly in the neocortex, electrical synapses have been shown to connect low-threshold spiking (LTS) as well as fast spiking (FS) interneurons. Experiments have highlighted the roles of electrical synapses in the dynamics of neuronal networks. Here we investigate theoretically how intrinsic cell(More)
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or(More)
Recent studies have shown that local cortical feedback can have an important effect on the response of neurons in primary visual cortex to the orientation of visual stimuli. In this work, we study the role of the cortical feedback in shaping the spatiotemporal patterns of activity in cortex. Two questions are addressed: one, what are the limitations on the(More)
We study the existence and stability of persistent states in large networks of quadratic integrate-and-fire neurons. The networks consist of two populations, one excitatory and one inhibitory. The stability of the asynchronous state is studied analytically. Our study demonstrates the role of recurrent inhibition and inhibitory-inhibitory interactions in(More)
Experiments performed in normal animals suggest that the basal ganglia (BG) are crucial in motor program selection. BG are also involved in movement disorders. In particular, BG neuronal activity in parkinsonian animals and patients is more oscillatory and more synchronous than in normal individuals. We propose a new model for the function and dysfunction(More)