David Hakkoum

Learn More
Interleukin (IL)-6 is a pro-inflammatory cytokine now widely recognized to contribute to the molecular events that follow CNS injury. Little is known, however, about its action on axonal sprouting and regeneration in the brain. We addressed this issue using the model of transection of Schaffer collaterals in mice organotypic hippocampal slice cultures.(More)
Transient anoxia/hypoglycaemia in organotypic hippocampal slice cultures, a model of transient brain ischaemia, ultimately results in delayed cell death. Although the mechanisms underlying this delayed death remain unknown, an increase in excitatory drive has been postulated. We report here that transient anoxia/hypoglycaemia in rat hippocampal slice(More)
Clusterin (or apolipoprotein J) is a widely distributed multifunctional glycoprotein involved in CNS plasticity and post-traumatic remodeling. Using biochemical and morphological approaches, we investigated the clusterin ontogeny in the CNS of wild-type (WT) mice and explored developmental consequences of clusterin gene knock-out in clusterin null (Clu-/-)(More)
The reduced ability of central axons to regenerate after injury is significantly influenced by the presence of several molecules that inhibit axonal growth. Nogo-A is one of the most studied and most potent of the myelin-associated growth inhibitory molecules. Its neutralization, as well as interference with its signalling, allows for enhanced axonal(More)
Clusterin or apolipoprotein J is a heterodimeric glycoprotein which is known to be increased during tissue involution in response to hormonal changes or injury and under circumstances leading to apoptosis. Previous studies in wild-type (WT) and clusterin-null (Clu-/-) mice indicated a protective role of clusterin over-expression in astrocytes lasting up to(More)
  • 1