David H. Shoemaker

Learn More
The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics of gravity, the structures of black holes, and the equation of state of nuclear(More)
Multiple-stage seismic vibration isolation stacks, which consist of alternating layers of stiff masses and compliant springs, can provide significant passive filtering of ground vibration for experiments and equipment that are sensitive to mechanical noise. We describe the design, modeling and testing of a prototype of a stack suitable for use in the Laser(More)
LISA will be the first space-borne gravitational wave observatory. It aims to detect gravitational waves in the 0.1 mHz÷1 Hz range from sources including galactic binaries, super-massive black-hole binaries, capture of objects by super-massive black-holes and stochastic background. LISA is an ESA approved Cornerstone Mission foreseen as a joint ESA-NASA(More)
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent(More)
To meet the overall isolation and alignment requirements for the optics in Advanced LIGO, the planned upgrade to LIGO, the US laser interferometric gravitational wave observatory, we are developing three subsystems: a hydraulic external pre-isolator for low frequency alignment and control, a two-stage active isolation platform designed to give a factor of(More)
As the first generation of laser interferometric gravitational wave detectors near operation, research and development has begun on increasing the instrument's sensitivity while utilizing the existing infrastructure. In the Laser Interferometer Gravitational Wave Observatory (LIGO), significant improvements are being planned for installation in ∼2007,(More)
(Affiliations can be found after the references in the electronic version) ABSTRACT Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and(More)
We present a LIGO search for short-duration gravitational waves (GWs) associated with soft gamma ray repeater (SGR) bursts. This is the first search sensitive to neutron star f modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from(More)
16. Abstract This study explores the application of mileage-based user fees, or vehicle-miles traveled (VMT) fees, as an alternative to the fuel tax in rural and small urban areas. The purpose of the study is to identify the issues associated with implementation of a potential new transportation funding system so that public and political concerns in rural(More)
We have computed the gravitational wave signal from supernova core collapse using the presently most realistic input physics available. We start from state-of-the-art progenitor models of rotating and non-rotating massive stars, and simulate the dynamics of their core collapse by integrating the equations of axisymmetric hydrodynamics together with the(More)