Learn More
Activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin causes altered gene expression and toxicity. The AHR repressor (AHRR) inhibits AHR signaling through a proposed mechanism involving competition with AHR for dimerization with AHR nuclear translocator (ARNT) and binding to AHR-responsive enhancer elements (AHREs). We(More)
Polycyclic aromatic hydrocarbons (PAH) are common environmental pollutants that suppress the immune system in part by inducing pro/pre-B cell apoptosis. The PAH-induced death signaling pathway resembles the signaling cascade activated during clonal deletion and modeled by B cell receptor cross-linking or by dexamethasone exposure of immature surface Ig(+) B(More)
Receptor crosslinking of T-cell hybridomas induces cell activation followed by apoptosis. This activation-induced cell death requires de novo synthesis of RNA and proteins, but the actual gene products that provide the death signal have not been identified. We show here that receptor crosslinking induces Fas ligand and upregulates Fas, and that the ensuing(More)
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important(More)
Type 4 cyclic adenosine monophosphate (cAMP) phosphodiesterase (PDE4) inhibitors and other agents that raise intracellular cAMP levels induce apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) but not in T-CLL or peripheral blood T cells. Two principal effector proteins for cAMP are protein kinase A (PKA) and EPAC (exchange protein directly activated(More)
The mechanisms leading to autoimmune diseases remain largely unknown despite numerous lines of experimental inquiry and epidemiological evidence. The growing number of genome-wide association studies and the largely incomplete concordance for autoimmune diseases in monozygotic twins support the role of the environment (including infectious agents and(More)
Treatment of WEHI 231 immature B-lymphoma cells with an antibody against their surface immunoglobulin (anti-Ig) induces apoptosis and has been studied extensively as a model of B-cell tolerance. Anti-Ig treatment of exponentially growing WEHI 231 cells results in an early transient increase in c-myc expression that is followed by a decline to below basal(More)
Exposure to and bioaccumulation of lipophilic environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs), has been implicated in breast cancer. Treatment of female rats with the prototypic xenobiotic PAH 7,12-dimethylbenz(a)anthracene (DMBA) induces mammary tumors with an invasive phenotype. Here, we show that green tea prevents or reverses(More)
The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg)(More)