Learn More
In genetic screens for new endocytosis genes in Caenorhabditis elegans we identified RME-1, a member of a conserved class of Eps15-homology (EH)-domain proteins. Here we show that RME-1 is associated with the periphery of endocytic organelles, which is consistent with a direct role in endocytic transport. Endocytic defects in rme-1 mutants indicate that the(More)
In Caenorhabditis elegans three pairs of neurons, AFD, AIY, and AIZ, play a key role in thermosensation. The LIM homeobox gene ceh-14 is expressed in the AFD thermosensory neurons. ceh-14 mutant animals display athermotactic behaviors, although the neurons are still present and differentiated. Two other LIM homeobox genes, ttx-3 and lin-11, function in the(More)
Transgenic Caenorhabditis elegans animals can be engineered to express high levels of the human beta amyloid peptide (Abeta). Histochemistry of fixed tissue from these animals reveals deposits reactive with the amyloid-specific dyes Congo Red and thioflavin S (Fay et al., J. Neurochem 71:1616, 1998). Here we show by immuno-electron microscopy that these(More)
Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that(More)
Using electron microscopy and immunofluorescent labeling of adherens junctions, we have reconstructed the changes in cell architecture and intercellular associations that occur during morphogenesis of the nematode male tail tip. During late postembryonic development, the Caenorhabditis elegans male tail is reshaped to form a copulatory structure. The most(More)
Motor neuron function depends on neurotransmitter release from synaptic vesicles (SVs). Here we show that the UNC-4 homeoprotein and its transcriptional corepressor protein UNC-37 regulate SV protein levels in specific Caenorhabditis elegans motor neurons. UNC-4 is expressed in four classes (DA, VA, VC, and SAB) of cholinergic motor neurons. Antibody(More)
BACKGROUND We are interested in understanding how the twenty neurons of the C. elegans pharynx develop in an intricate yet reproducible way within the narrow confines of the embryonic pharyngeal primordium. To complement an earlier study of the pharyngeal M2 motorneurons, we have now examined the effect of almost forty mutations on the morphology of a(More)
The gene mab-21, which encodes a novel protein of 386 amino acids, is required for the choice of alternate cell fates by several cells in the C. elegans male tail. Three cells descended from the ray 6 precursor cell adopt fates of anterior homologs, and a fourth, lineally unrelated hypodermal cell is transformed into a neuroblast. The affected cells lie(More)
During development, neurons extend axons along defined routes to specific target cells. We show that additional mechanisms ensure that axons maintain their correct positioning in defined axonal tracts. After termination of axonal outgrowth and target recognition, axons in the ventral nerve cord (VNC) of Caenorhabditis elegans require the presence of a(More)
Changes in cellular microtubule organization often accompany developmental progression. In the Caenorhabditis elegans embryo, the centrosome, which is attached to the nucleus via ZYG-12, organizes the microtubule network. In this study, we investigate ZYG-12 function and microtubule organization before embryo formation in the gonad. Surprisingly, ZYG-12 is(More)