David H. Fleisher

Learn More
Knowledge of temperature effects on whole canopy photosynthesis, growth, and development of potato (Solanum tuberosum L.) is important for crop model development and evaluation. The objective of this study was to quantify the effects of temperature on canopy photosynthesis, development, growth, and partitioning of potato cv. Atlantic under elevated(More)
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from(More)
Experiments were conducted in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers using plants grown in pots. Drought treatments were imposed on potato plants (Solanum tuberosum cv. Kennebec) beginning 10 days after tuber initiation. A total of 23 out of 37 foliar metabolites were affected by drought when measured 11 days after(More)
Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison(More)
Mature potato (Solanum tuberosum L. cv. Kennebec) canopies are composed of leaves originating frommainand axillary-stem branches. Canopy leaf distribution and its corresponding contribution to wholecanopy photosynthetic rates have not been quantified. An experiment using SPAR (Soil–Plant–Atmosphere–Research) chambers maintained at 16-h day/night(More)
A portable open gas-exchange system (Li-6400, Li-Cor, Inc., Lincoln, NE, USA) has been widely used for the measurement of net gas exchanges and calibration/parameterization of leaf models. Measurement errors due to diffusive leakage rates of water vapor (LW) and CO2 (LC) between inside and outside of the leaf chamber, and the inward dark transpiration rate(More)
A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were(More)
The SUBSTOR crop growth model was adapted for controlled–environment hydroponic production of potato (Solanum tuberosum L. cv. Norland) under elevated atmospheric carbon dioxide concentration. Adaptations included adjustment of input files to account for cultural differences between the field and controlled environments, calibration of genetic coefficients,(More)
The Farquhar—von Caemmerer—Berry (FvCB) biochemical model of photosynthesis, commonly used to estimate CO2 assimilation at various spatial scales from leaf to global, has been used to assess the impacts of climate change on crop and ecosystem productivities. However, it is widely known that the parameters in the FvCB model are difficult to accurately(More)