Learn More
Cell division in rod-shaped bacteria is initiated by formation of a ring of the tubulin-like protein FtsZ at mid-cell. Division site selection is controlled by a conserved division inhibitor MinCD, which prevents aberrant division at the cell poles. The Bacillus subtilis DivIVA protein controls the topological specificity of MinCD action. Here we show that(More)
The Bacillus subtilis divIVA gene, first defined by a mutation giving rise to anucleate minicells, has been cloned and characterized. Depletion of DivIVA leads to inhibition of the initiation of cell division. The residual divisions that do occur are abnormally placed and sometimes misorientated relative to the long axis of the cell. The DivIVA phenotype(More)
Roots, as organs distinguishable developmentally and anatomically from shoots (other than by occurrence of stomata and sporangia on above-ground organs), evolved in the sporophytes of at least two distinct lineages of early vascular plants during their initial major radiation on land in Early Devonian times (c. 410-395 million years ago). This was some 15(More)
A deletion in the structural gene for the soluble lytic transglycosylase, the predominant murein hydrolase in the soluble fraction of Escherichia coli, has been constructed. The mutant grows normally but exhibits increased sensitivity toward mecillinam, a beta-lactam specific for penicillin-binding protein 2. In the presence of furazlocillin or other(More)
The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular(More)
The Bacillus subtilis divIVA gene encodes a coiled-coil protein that shows weak similarity to eukaryotic tropomyosins. The protein is targeted to the sites of cell division and mature cell poles where, in B.subtilis, it controls the site specificity of cell division. Although clear homologues of DivIVA are present only in Gram-positive bacteria, and its(More)
We have investigated the ability of 5-methyltetrahydrofolate (5-MTHF) and tetrahydrobiopterin (BH(4)) to modulate nitric oxide (NO)-independent vascular relaxations that are mediated by the sequential spread of endothelial hyperpolarization through the wall of the rabbit iliac artery by means of myoendothelial and homocellular smooth muscle gap junctions.(More)
We have used X-ray microangiography to investigate the hypothesis that the potent endogenous vasodilator endothelium-derived relaxing factor (EDRF) contributes to the maintenance of "optimality" in vascular branching by modulating the diameters of the parent (D0) and daughter (D1 and D2) arteries at bifurcations. Five anatomically different types of(More)
We have investigated the role of cAMP in NO- and prostanoid-independent relaxations that are widely attributed to an endothelium-derived hyperpolarizing factor (EDHF). Under control conditions EDHF-type relaxations evoked by acetylcholine (ACh) in rabbit iliac arteries were transient, but in the presence of the cAMP phosphodiesterase inhibitor(More)
We have investigated the role of cAMP in nitric oxide (NO)- and prostanoid-independent vascular relaxations evoked by acetylcholine (ACh) in isolated arteries and perfused ear preparations from the rabbit. These EDHF-type responses are shown to be associated with elevated cAMP levels specifically in smooth muscle and are attenuated by blocking adenylyl(More)