Learn More
We present a new system for functional electrical stimulation (FES) applications based on networked stimulation units. They embed an advanced analog circuit, which provides multipolar and multiphasic stimulation profiles, and digital circuits, which ensure safety, locally executed programmed profiles, and communication with the master controller. This(More)
In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team(More)
In paraplegic patients with upper motor neuron lesions the signal path from the central nervous system to muscles is interrupted. Functional Electrical Stimulation (FES) applied to the lower motor neurons can replace the lacking signals. A neuroprosthesis may be used to restore motor function in paraplegic patients on the basis of FES. The neuroprosthesic(More)
Functional electrical stimulation (FES) is effective to restore movement in spinal cord injured (SCI) subjects. Unfortunately, muscle fatigue constrains the application of FES so that output torque feedback is interesting for fatigue compensation. Whereas, inadequacy of torque sensors is another challenge for FES control. Torque estimation is thereby(More)
Co-contraction of antagonistic muscles may yield a stable joint movement, force regulation and an increasing joint stiffness. In biomechanics, the force-sharing problem is often solved through minimization of an energetic criterion under given constraints. This criterion has been used in this paper to compute the necessary stimulation parameters as provided(More)
BACKGROUND EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently.(More)
Functional electrical stimulation (FES) is able to restore motor function of spinal cord injured (SCI) patients. To make adaptive FES control taking into account the actual muscle state with muscular feedback information, torque estimation and prediction are important to be provided beforehand. Evoked EMG (eEMG) has been found to be highly correlated with(More)
We present the results of a 5-year patient follow-up after implantation of an original neuroprosthesis. The system is able to stimulate both epimysial and neural electrodes in such a way that the complete flexor-extensor chain of the lower limb can be activated without using the withdrawal reflex. We demonstrate that standing and assisted walking are(More)
The purpose of the study was to examine the time course of neuromuscular fatigue components during a low-frequency electrostimulation (ES) session. Three bouts of 17 trains of stimulation at 30 HZ (4 s on, 6 s off) were used to electrically induce fatigue in the plantar flexor muscles. Before and after every 17-train bout, torque, electromyographic activity(More)