David Griffeath

Learn More
We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most(More)
Digital snowflakes are solidifying cellular automata on the triangular lattice with the property that a site having exactly one occupied neighbor always becomes occupied at the next time. We demonstrate that each such rule fills the lattice with an asymptotic density that is independent of the initial finite set. There are some cases in which this density(More)
  • 1