Learn More
Genetic and embryological experiments have established the Caenorhabditis elegans adult hermaphrodite gonad as a paradigm for studying the control of germline development and the role of soma-germline interactions. We describe ultrastructural features relating to essential germline events and the soma-germline interactions upon which they depend, as(More)
BACKGROUND A conserved biological feature of sexual reproduction in animals is that oocytes arrest in meiotic prophase and resume meiosis in response to extraovarian signals. In C. elegans, sperm trigger meiotic resumption by means of the major sperm protein (MSP) signal. MSP promotes meiotic resumption by functioning as an ephrin-signaling antagonist and(More)
The major sperm protein (MSP) is the central cytoskeletal element required for actin-independent motility of nematode spermatozoa. MSP has a dual role in Caenorhabditis elegans reproduction, functioning as a hormone for both oocyte meiotic maturation and ovarian muscle contraction. The identification of the signaling function of MSP raised the question, how(More)
Defining the forces that sculpt genome organization is fundamental for understanding the origin, persistence, and diversification of species. The genomic sequences of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae provide an excellent opportunity to explore the dynamics of chromosome evolution. Extensive chromosomal rearrangement has(More)
The restricted spatiotemporal translation of maternal mRNAs, which is crucial for correct cell fate specification in early C. elegans embryos, is regulated primarily through the 3'UTR. Although genetic screens have identified many maternally expressed cell fate-controlling RNA-binding proteins (RBPs), their in vivo targets and the mechanism(s) by which they(More)
In most animals, female meiotic spindles assemble in the absence of centrosomes; instead, microtubule nucleation by chromatin, motor activity, and microtubule dynamics drive the self-organization of a bipolar meiotic spindle. Meiotic spindle assembly commences when microtubules gain access to chromatin after nuclear envelope breakdown (NEBD) during meiotic(More)
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions(More)
The vacuolar-type ATPase (V-ATPase) is a proton pump composed of two sectors, the cytoplasmic V(1) sector that catalyzes ATP hydrolysis and the transmembrane V(o) sector responsible for proton translocation. The transmembrane V(o) complex directs the complex to different membranes, but also has been proposed to have roles independent of the V(1) sector.(More)
BACKGROUND In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and embryo production; sperm release the major sperm protein (MSP) signal to trigger meiotic resumption. Meiotic arrest depends on the parallel function of the oocyte VAB-1 MSP/Eph receptor and somatic G protein(More)
BACKGROUND ClC anion channels are ubiquitous and have been identified in organisms as diverse as bacteria and humans. Despite their widespread expression and likely physiological importance, the function and regulation of most ClCs are obscure. The nematode Caenorhabditis elegans offers significant experimental advantages for defining ClC biology. These(More)