Learn More
The paper presents a system for automatic, geo-registered, real-time 3D reconstruction from video of urban scenes. The system collects video streams, as well as GPS and inertia measurements in order to place the reconstructed models in geo-registered coordinates. It is designed using current state of the art real-time modules for all processing steps. It(More)
This work presents a real-time, data-parallel approach for global label assignment on regular grids. The labels are selected according to a Markov random field energy with a Potts prior term for binary interactions. We apply the proposed method to accelerate the cleanup step of a real-time dense stereo method based on plane sweeping with multiple sweeping(More)
This paper introduces an approach for dense 3D reconstruc7 7 tion from unregistered Internet-scale photo collections with about 3 mil8 8 lion of images within the span of a day on a single PC (“cloudless”). Our 9 9 method advances image clustering, stereo, stereo fusion and structure 10 10 from motion to achieve high computational performance. We leverage(More)
The paper introduces a data collection system and a processing pipeline for automatic geo-registered 3D reconstruction of urban scenes from video. The system collects multiple video streams, as well as GPS and INS measurements in order to place the reconstructed models in geo- registered coordinates. Besides high quality in terms of both geometry and(More)
Recent research has focused on systems for obtaining automatic 3D reconstructions of urban environments from video acquired at street level. These systems record enormous amounts of video; therefore a key component is a stereo matcher which can process this data at speeds comparable to the recording frame rate. Furthermore, urban environments are unique in(More)
Piecewise planar models for stereo have recently become popular for modeling indoor and urban outdoor scenes. The strong planarity assumption overcomes the challenges presented by poorly textured surfaces, and results in low complexity 3D models for rendering, storage, and transmission. However, such a model performs poorly in the presence of non-planar(More)
High-performance feature tracking from video input is a valuable tool in many computer vision techniques and mixed reality applications. This work presents a refined and substantially accelerated approach to KLT feature tracking performed on the GPU. Additionally, a global gain ratio between successive frames is estimated to compensate for changes in the(More)
We have discovered that 3D reconstruction can be achieved from asingle still photographic capture due to accidental motions of thephotographer, even while attempting to hold the camera still. Although these motions result in little baseline and therefore high depth uncertainty, in theory, we can combine many such measurements over the duration of the(More)
Recently, there has been an increasing number of depth cameras available at commodity prices. These cameras can usually capture both color and depth images in real-time, with limited resolution and accuracy. In this paper, we study the problem of 3D deformable face tracking with such commodity depth cameras. A regularized maximum likelihood deformable model(More)
Stereoscopic 3D has gained significant importance in the entertainment industry. However, production of high quality stereoscopic content is still a challenging art that requires mastering the complex interplay of human perception, 3D display properties, and artistic intent. In this paper, we present a computational stereo camera system that closes the(More)