David G . Wells

Learn More
Long-term changes in synaptic efficacy may require the regulated translation of dendritic mRNAs. While the basis of such regulation is unknown, it seemed possible that some features of translational control in development could be recapitulated in neurons. Polyadenylation-induced translation of oocyte mRNAs requires the cis-acting CPE sequence and the(More)
The mechanism of kainate receptor targeting and clustering is still unresolved. Here, we demonstrate that members of the SAP90/PSD-95 family colocalize and associate with kainate receptors. SAP90 and SAP102 coimmunoprecipitate with both KA2 and GluR6, but only SAP97 coimmunoprecipitates with GluR6. Similar to NMDA receptors, GluR6 clustering is mediated by(More)
Many cellular functions require the synthesis of a specific protein or functional cohort of proteins at a specific time and place in the cell. Local protein synthesis in neuronal dendrites is essential for understanding how neural activity patterns are transduced into persistent changes in synaptic connectivity during cortical development, memory storage(More)
The synapse is the primary locus of cell-cell communication in the nervous system. It is now clear that the synapse incorporates diverse cell signaling modalities in addition to classical neurotransmission. Here we show that two components of the insulin pathway are localized at CNS synapses, where they are components of the postsynaptic density (PSD). An(More)
The ability of neurons to modify synaptic connections based on activity is essential for information processing and storage in the brain. The induction of long-lasting changes in synaptic strength requires new protein synthesis and is often mediated by NMDA-type glutamate receptors (NMDARs). We used a dark-rearing paradigm to examine mRNA translational(More)
Memory can last a lifetime, yet synaptic contacts that contribute to the storage of memory are composed of proteins that have much shorter lifetimes. A physiological model of memory formation, long-term potentiation (LTP), has a late protein-synthesis-dependent phase (L-LTP) that can last for many hours in slices or even for days in vivo. Could the(More)
The creation of enduring modifications in synaptic efficacy requires new protein synthesis. Neurons face the formidable challenge of directing these newly made proteins to the appropriate subset of synapses. One attractive solution to this problem is the local translation of mRNAs that are targeted to dendrites and perhaps to synapses themselves. The(More)
Long-term synaptic plasticity is both protein synthesis-dependent and synapse-specific. Therefore, the identity of the newly synthesized proteins, their localization, and mechanism of regulation are critical to our understanding of this process. Tissue plasminogen activator (tPA) is a secreted protease required for some forms of long-term synaptic(More)
The precise orchestration of synaptic differentiation is critical for efficient information exchange in the nervous system. The nerve-muscle synapse forms in response to agrin, which is secreted from the motor nerve terminal and induces the clustering of acetylcholine receptors (AChRs) and other elements of the postsynaptic apparatus on the subjacent muscle(More)
Myosin VI (Myo6) is an actin-based motor protein implicated in clathrin-mediated endocytosis in nonneuronal cells, though little is known about its function in the nervous system. Here, we find that Myo6 is highly expressed throughout the brain, localized to synapses, and enriched at the postsynaptic density. Myo6-deficient (Snell's waltzer; sv/sv)(More)