Learn More
Detection of differentially regulated genes has been severely hampered by technical limitations. In an effort to overcome these problems, the PCR-coupled subtractive process of representational difference analysis (RDA) [Lisitsyn, N. et al. (1993) Science 259, 946-951] has been adapted for use with cDNA. In a model system, RAG-1 and RAG-2, the genes(More)
Somatic hypermutation introduces point mutations into immunoglobulin genes in germinal centre B cells during an immune response. The reaction is initiated by cytosine deamination by the activation-induced deaminase (AID) and completed by error-prone processing of the resulting uracils by mismatch and base excision repair factors. Somatic hypermutation(More)
A system for tetracycline-regulated inducible gene expression was described recently which relies on constitutive expression of a tetracycline-controlled transactivator (tTA) fusion protein combining the tetracycline repressor and the transcriptional activation domain of VP16 [Gossen, M. & Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547-5551]. This(More)
V(D)J recombination assembles immunoglobulin and T cell receptor genes during lymphocyte development through a series of carefully orchestrated DNA breakage and rejoining events. DNA cleavage requires a series of protein-DNA complexes containing the RAG1 and RAG2 proteins and recombination signals that flank the recombining gene segments. In this review, we(More)
V(D)J recombination proceeds through a series of protein:DNA complexes mediated in part by the RAG1 and RAG2 proteins. These proteins are responsible for sequence-specific DNA recognition and DNA cleavage, and they appear to perform multiple postcleavage roles in the reaction as well. Here we review the interaction of the RAG proteins with DNA, the(More)
The critical initial step in V(D)J recombination, binding of RAG1 and RAG2 to recombination signal sequences flanking antigen receptor V, D, and J gene segments, has not previously been characterized in vivo. Here, we demonstrate that RAG protein binding occurs in a highly focal manner to a small region of active chromatin encompassing Ig kappa and Tcr(More)
Two waves of immunoglobulin gene rearrangements, first of the heavy, then of the light chain chain gene loci form functional immunoglobulin genes during B cell development. In mouse bone marrow the differential surface expression of B220 (CD45R), c-kit, CD25, and surrogate light chain as well as the cell cycle status allows FACS separation of the cells in(More)
The initiation of V(D)J recombination by the recombination activating gene 1 (RAG1) and RAG2 proteins is carefully orchestrated to ensure that antigen receptor gene assembly occurs in the appropriate cell lineage and in the proper developmental order. Here we review recent advances in our understanding of how DNA binding and cleavage by the RAG proteins are(More)
During V(D)J recombination, RAG1 and RAG2 cleave DNA adjacent to highly conserved recombination signals, but nothing is known about the protein-DNA complexes that exist after cleavage. Using a properly regulated in vitro V(D)J cleavage system, together with nuclease sensitivity, mobility shift, and immunoprecipitation experiments, we provide evidence that a(More)
RAG initiates antibody V(D)J recombination in developing lymphocytes by generating "on-target" DNA breaks at matched pairs of bona fide recombination signal sequences (RSSs). We employ bait RAG-generated breaks in endogenous or ectopically inserted RSS pairs to identify huge numbers of RAG "off-target" breaks. Such breaks occur at the simple CAC motif that(More)