David G Overdier

Learn More
Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (HNF-3 alpha, -3 beta, and -3 gamma) are known to regulate the transcription of liver-specific genes. The HNF-3 proteins bind to DNA as a monomer through a modified helix-turn-helix, known as the winged helix motif, which is also utilized by a number of developmental regulators, including the(More)
The hepatocyte nuclear factor 3alpha (HNF-3alpha) and 3beta proteins have homology in the winged helix/fork head DNA binding domain and regulate cell-specific transcription in hepatocytes and in respiratory and intestinal epithelia. In this study, we describe two novel isoforms of the winged helix transcription factor family, HNF-3/fork head homolog 11A(More)
The hepatocyte nuclear factor 3/fork head homolog (HFH) proteins are an extensive family of transcription factors which share homology in the winged helix DNA binding domain. Members of the winged helix family have been implicated in cell fate determination during pattern formation, in organogenesis and in cell type-specific gene expression. In this study,(More)
The hepatocyte nuclear factor-3 (HNF-3)/forkhead (fkh) proteins consist of an extensive family of tissue-specific and developmental gene regulators which share homology within the winged helix DNA binding motif. We report on the isolation of a new family member, HNF-3/forkhead homolog 8 (HFH-8), from lung cDNA libraries and the derivation of the complete(More)
Hepatocyte nuclear factor (HNF)-3 alpha, -3 beta, and -3 gamma are liver transcription factors that mediate the coordinate expression of a number of hepatocyte-specific genes. The HNF-3 proteins share DNA-binding-domain homology among themselves and with the Drosophila homeotic protein forkhead (fkh). The HNF-3/fkh DNA-binding domain constitutes an(More)
The hepatocyte nuclear factor 3 (HNF-3) gene family is composed of three proteins (alpha, beta, and gamma) that are transcription factors involved in the coordinate expression of several liver genes. All three proteins share strong homology in their DNA binding domains (region I) and are able to recognize the same DNA sequence. They also possess two similar(More)
The hepatocyte nuclear factor-3 (HNF-3)/fork head homolog (HFH) proteins are an extensive family of transcription factors, which share homology in the winged helix DNA binding domain. Members of the HFH/winged helix family have been implicated in cell fate determination during pattern formation, in organogenesis, and in cell-type-specific gene expression.(More)
A 100-amino-acid DNA-binding motif, known as the winged helix, was first identified in the mammalian hepatocyte nuclear factor-3 (HNF-3) and Drosophila fork head family of transcription factors. Subsequently, more than 40 different genes that contain the winged helix motif have been identified. In the studies described here, we have determined the murine(More)
The proU operon of Salmonella typhimurium is induced by conditions of high osmolality. The cis-acting sequences that mediate osmotic control of transcription were characterized by deletion analysis. The nucleotide sequence between -60 and +274 (relative to the transcription start point) is sufficient for normal osmotic control. Deletions that removed(More)
Southern blot analysis of 15 proU transposon insertions in Salmonella typhimurium indicated that this operon is at least 3 kilobase pairs in length. The nucleotide sequence of 1.5-kilobase-pair fragment that contains the transcriptional control region of the proU operon and the coding sequences specifying 290 amino acids of the first structural gene of the(More)