David G. Lloyd

Learn More
This paper provides an overview of forward dynamic neuromusculoskeletal modeling. The aim of such models is to estimate or predict muscle forces, joint moments, and/or joint kinematics from neural signals. This is a four-step process. In the first step, muscle activation dynamics govern the transformation from the neural signal to a measure of muscle(More)
This paper examined if an electromyography (EMG) driven musculoskeletal model of the human knee could be used to predict knee moments, calculated using inverse dynamics, across a varied range of dynamic contractile conditions. Muscle-tendon lengths and moment arms of 13 muscles crossing the knee joint were determined from joint kinematics using a(More)
PURPOSE To investigate the external loads applied to the knee joint during dynamic cutting tasks and assess the potential for ligament loading. METHODS A 50-Hz VICON motion analysis system was used to determine the lower limb kinematics of 11 healthy male subjects during running, sidestepping, and crossover cut. A kinematic model was used in conjunction(More)
Repeatability of traditional kinematic and kinetic models is affected by the ability to accurately locate anatomical landmarks (ALs) to define joint centres and anatomical coordinate systems. Numerical methods that define joint centres and axes of rotation independent of ALs may also improve the repeatability of kinematic and kinetic data. The purpose of(More)
Sexually dimorphic seed plants have partial or complete separation of ovule and pollen functions into two separate sexes, here uniformly called male and female. Secondary sex characters (differences between the sexes in structures other than the androecia and gynoecia) of such populations are reviewed. In a number of perennial species, males exceed females(More)
It has been argued that minimization of metabolic-energy costs is a primary determinant of gait selection in terrestrial animals. This view is based predominantly on data from humans and horses, which have been shown to choose the most economical gait (walking, running, galloping) for any given speed. It is not certain whether a minimization of metabolic(More)
PURPOSE The purpose of this article was to investigate the activation patterns of muscles surrounding the knee during preplanned (PP) and unanticipated (UN) running and cutting tasks, with respect to the external moments applied to the joint. It was hypothesized that activation strategies during PP tasks would correspond to the magnitude and direction of(More)
PURPOSE To determine how unanticipated performance of cutting maneuvers in sport affects the external loads applied to the knee joint and the potential risk for ligament injury. METHODS A 50-Hz VICON motion analysis system was used to determine the lower limb kinematics of 11 healthy male subjects during running and cutting tasks performed under(More)
Impairment of the human neuromusculoskeletal system can lead to significant mobility limitations and decreased quality of life. Computational models that accurately represent the musculoskeletal systems of individual patients could be used to explore different treatment options and optimize clinical outcome. The most significant barrier to model-based(More)
The alleged high net energy cost of running and low net energy cost of walking in humans have played an important role in the interpretation of the evolution of human bipedalism and the biomechanical determinants of the metabolic cost of locomotion. This study re-explores how the net metabolic energy cost of running and walking (J kg(-1) m(-1)) in humans(More)