Learn More
Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage(More)
  • S Asser-Kaiser, E Fritsch, K Undorf-Spahn, J Kienzle, K E Eberle, N A Gund +5 others
  • 2007
Insect-specific baculoviruses are increasingly used as biological control agents of lepidopteran pests in agriculture and forestry, and they have been previously regarded as robust to resistance development by the insects. However, in more than a dozen cases of field resistance of the codling moth Cydia pomonella to commercially applied C. pomonella(More)
The evolutionary importance of hybridization and introgression has long been debated. Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely(More)
Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are widely used for pest control. Bt-resistant insect strains have been studied, but the molecular basis of resistance has remained elusive. Here, we show that disruption of a cadherin-superfamily gene by retrotransposon-mediated insertion was linked to high levels of resistance(More)
Pheromone-based behaviours are crucial in animals from insects to mammals, and reproductive isolation is often based on pheromone differences. However, the genetic mechanisms by which pheromone signals change during the evolution of new species are largely unknown. In the sexual communication system of moths (Insecta: Lepidoptera), females emit a(More)
Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut(More)
BACKGROUND The chemical components of sex pheromones have been determined for more than a thousand moth species, but so far only a handful of genes encoding enzymes responsible for the biosynthesis of these compounds have been identified. For understanding the evolution of moth sexual communication, it is essential to know which genes are involved in the(More)
BACKGROUND Helicoverpa armigera and H. zea are amongst the most significant polyphagous pest lepidopteran species in the Old and New Worlds respectively. Separation of H. armigera and H. zea is difficult and is usually only achieved through morphological differences in the genitalia. They are capable of interbreeding to produce fertile offspring. The single(More)
Double-stranded RNAs (dsRNAs) targeted against essential genes can trigger a lethal RNA interference (RNAi) response in insect pests. The application of this concept in plant protection is hampered by the presence of an endogenous plant RNAi pathway that processes dsRNAs into short interfering RNAs. We found that long dsRNAs can be stably produced in(More)
Assortative mating may result from intrinsic individual mating preferences or from assortment traits not requiring expression of preferences. Assortment traits are phenotypes expressed in both sexes that enhance the probability of encountering individuals possessing similar trait values. In the noctuid moth Spodoptera frugiperda, it has been suggested that(More)