David Gómez-Varela

Learn More
1. Modulation of the human ether-à-go-go-related gene (HERG) K+ channel was studied in two-electrode voltage-clamped Xenopus oocytes co-expressing the channel protein and the thyrotropin-releasing hormone (TRH) receptor. 2. Addition of TRH caused clear modifications of HERG channel gating kinetics. These variations consisted of an acceleration of(More)
The participation of amino-terminal domains in human ether-a-go-go (eag)-related gene (HERG) K(+) channel gating was studied using deleted channel variants expressed in Xenopus oocytes. Selective deletion of the HERG-specific sequence (HERG Delta138-373) located between the conserved initial amino terminus (the eag or PAS domain) and the first transmembrane(More)
Gating kinetics of human ether-a-go-go (eag)-related gene (HERG) K+ channel expressed in Xenopus oocytes was studied using non-inactivating channel variants carrying different structural modifications in the amino terminus. A kinetics model was elaborated to describe the behavior of full-length channels, that includes at least three open states besides the(More)
Measurements of electrical activity and intracellular Ca(2+) levels were performed in perforated-patch clamped GH(3) cells to determine the contribution of large-conductance calcium-activated K(+) (BK) channels to action potential repolarization and size of the associated Ca(2+) oscillations. By examining the dependence of action potential (AP) duration on(More)
The biochemical cascade linking activation of phospholipase C-coupled thyrotropin-releasing hormone (TRH) receptors to rat ERG (r-ERG) channel modulation was studied in situ using perforated-patch clamped adenohypophysial GH3 cells and pharmacological inhibitors. To check the recent suggestion that Rho kinase is involved in the TRH-induced r-ERG current(More)
We used Xenopus oocytes co-expressing thyrotropin-releasing hormone (TRH) receptors and human ether-a-go-go-related gene (HERG) K+ channel variants carrying different amino-terminal modifications to check the relevance of the proximal domain for hormonal regulation of the channel. Deletion of the whole proximal domain (Delta 138-373) eliminates TRH-induced(More)
Simultaneous measurements of electrical activity and intracellular Ca(2+) levels were performed in perforated-patch current-clamped individual GH3 cells. Both in cells showing brief (<100 ms) and long action potentials (APs), we found a good correlation between the averaged intracellular Ca2+ concentration ([Ca2+]i) and AP frequency, but not between the(More)
The identity of the G-protein coupling thyrotropin-releasing hormone (TRH) receptors to rat ether-à-go-go related gene (r-ERG) K+ channel modulation was studied in situ using perforated-patch clamped adenohypophysial GH(3) cells and dominant-negative variants (Galpha-QL/DN) of G-protein alpha subunits. Expression of dominant-negative Galpha(q/11) that(More)
Human ether-a-go-go-related gene (HERG) channels heterologously expressed in Xenopus oocytes are regulated by the activation of G protein-coupled hormone receptors that, like the thyrotropin-releasing hormone (TRH) receptor, activate phospholipase C. Previous work with serially deleted HERG mutants suggested that residues 326–345 located in the proximal(More)
  • 1