Learn More
Eukaryotic cells respond to unfolded proteins in their endoplasmic reticulum (ER stress), amino acid starvation, or oxidants by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). This adaptation inhibits general protein synthesis while promoting translation and expression of the transcription factor ATF4. Atf4(-/-) cells are(More)
Ideally, an oncolytic virus will replicate preferentially in malignant cells, have the ability to treat disseminated metastases, and ultimately be cleared by the patient. Here we present evidence that the attenuated vesicular stomatitis strains, AV1 and AV2, embody all of these traits. We uncover the mechanism by which these mutants are selectively(More)
Recent clinical data have emphatically shown the capacity of our immune systems to eradicate even advanced cancers. Although oncolytic viruses (OVs) were originally designed to function as tumour-lysing therapeutics, they have now been clinically shown to initiate systemic antitumour immune responses. Cell signalling pathways that are activated and promote(More)
The interferon-inducible, double-stranded RNA-dependent protein kinase PKR has been implicated in anti-viral, anti-tumor, and apoptotic responses. Others have attempted to examine the requirement of PKR in these roles by targeted disruption at the amino terminal-encoding region of the Pkr gene. By using a strategy that aims at disruption of the catalytic(More)
Interferons are circulating factors that bind to cell surface receptors, activating a signaling cascade, ultimately leading to both an antiviral response and an induction of growth inhibitory and/or apoptotic signals in normal and tumor cells. Attempts to exploit the ability of interferons to limit the growth of tumors in patients has met with limited(More)
Interferon (IFN)-induced antiviral responses are mediated through a variety of proteins, including the double-stranded RNA-dependent protein kinase PKR. Here we show that fibroblasts derived from PKR(-/-) mice are more permissive for vesicular stomatitis virus (VSV) infection than are wild-type fibroblasts and demonstrate a deficiency in(More)
Oncolytic viruses (OVs) are selected or designed to eliminate malignancies by direct infection and lysis of cancer cells. In contrast to this concept of direct tumor lysis by viral infection, we observed that a significant portion of the in vivo tumor killing activity of two OVs, vesicular stomatitis virus (VSV) and vaccinia virus is caused by indirect(More)
Acute infection of fibroblastic cell lines by the Indiana strain of vesicular stomatitis virus (VSV) usually induces dramatic cytopathic effects and shutoff of cellular gene expression. We have compared a series of independent mutants with differences in shutoff induction and found that M was mutated either in the N-terminus (M(51)R) or C-terminus (V(221)F(More)
This study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are(More)
Controlled expression of cellular and viral genes through alternative precursor messenger RNA (pre-mRNA) splicing requires serine/arginine-rich (SR) proteins. The Clk1 kinase, which phosphorylates SR proteins, is regulated through alternative splicing of the Clk1 pre-mRNA, yielding mRNAs encoding catalytically active and truncated inactive polypeptides(More)