David F. Fouhey

Learn More
Our everyday objects support various tasks and can be used by people for different purposes. While object classification is a widely studied topic in computer vision, recognition of object function, i.e., what people can do with an object and how they do it, is rarely addressed. In this paper we construct a functional object description with the aim to(More)
We present a new method for the robust detection and matching of multiple planes in pairs of images. Such planes can serve as stable landmarks for vision-based urban navigation. Our approach starts from SIFT matches and generates multiple local homography hypotheses using the recent J-linkage technique by Toldo and Fusiello, a robust randomized multi-model(More)
What primitives should we use to infer the rich 3D world behind an image? We argue that these primitives should be both visually discriminative and geometrically informative and we present a technique for discovering such primitives. We demonstrate the utility of our primitives by using them to infer 3D surface normals given a single image. Our technique(More)
In the past few years, convolutional neural nets (CNN) have shown incredible promise for learning visual representations. In this paper, we use CNNs for the task of predicting surface normals from a single image. But what is the right architecture? We propose to build upon the decades of hard work in 3D scene understanding to design a new CNN architecture(More)
We present an approach which exploits the coupling between human actions and scene geometry to use human pose as a cue for single-view 3D scene understanding. Our method builds upon recent advances in still-image pose estimation to extract functional and geometric constraints on the scene. These constraints are then used to improve single-view 3D scene(More)
Given a static scene, a human can trivially enumerate the myriad of things that can happen next and characterize the relative likelihood of each. In the process, we make use of enormous amounts of commonsense knowledge about how the world works. In this paper, we investigate learning this commonsense knowledge from data. To overcome a lack of densely(More)
In this paper we investigate 3D attributes as a means to understand the shape of an object in a single image. To this end, we make a number of contributions: (i) we introduce and define a set of 3D Shape attributes, including planarity, symmetry and occupied space, (ii) we show that such properties can be successfully inferred from a single image using a(More)
[1] Achieving a representative elementary volume (REV) has become a de facto criterion for demonstrating the quality of lCT measurements in porous media systems. However, the data quality implications of an REV requirement have not been previously examined. In this work, deterministic REVs for porosity, moisture saturation (SW), and air-water interfacial(More)
The field of functional recognition or affordance estimation from images has seen a revival in recent years. As originally proposed by Gibson, the affordances of a scene were directly perceived from the ambient light: in other words, functional properties like sittable were estimated directly from incoming pixels. Recent work, however, has taken a mediated(More)