Learn More
Systematic analyses of cancer genomes promise to unveil patterns of genetic alterations linked to the genesis and spread of human cancers. High-density single-nucleotide polymorphism (SNP) arrays enable detailed and genome-wide identification of both loss-of-heterozygosity events and copy-number alterations in cancer. Here, by integrating SNP array-based(More)
Hair graying is the most obvious sign of aging in humans, yet its mechanism is largely unknown. Here, we used melanocyte-tagged transgenic mice and aging human hair follicles to demonstrate that hair graying is caused by defective self-maintenance of melanocyte stem cells. This process is accelerated dramatically with Bcl2 deficiency, which causes selective(More)
Microphthalmia-associated transcription factor (MITF) acts as a master regulator of melanocyte development, function and survival by modulating various differentiation and cell-cycle progression genes. It has been demonstrated that MITF is an amplified oncogene in a fraction of human melanomas and that it also has an oncogenic role in human clear cell(More)
The microphthalamia-associated transcription factor (MITF) is an integral transcriptional regulator in melanocyte, the lineage from which melanoma cells originate. This basic-helix-loop-helix-leucine-zipper (bHLHzip) protein is critical for melanocyte cell-fate choice during commitment from pluripotent precursor cells in the neural crest. Its role in(More)
Cell for cell, probably no human cancer is as aggressive as melanoma. It is among a handful of cancers whose dimensions are reported in millimeters. Tumor thickness approaching 4 mm presents a high risk of metastasis, and a diagnosis of metastatic melanoma carries with it an abysmal median survival of 6-9 mo. What features of this malignancy account for(More)
Our understanding of how chromatin structure influences cellular processes such as transcription and replication has been limited by a lack of nucleosome-positioning data in human cells. We describe a high-resolution microarray approach combined with an analysis algorithm to examine nucleosome positioning in 3,692 promoters within seven human cell lines.(More)
The microphthalmia (mi) gene appears essential for pigment cell development and/or survival, based on its mutation in mi mice. It has also been linked to the human disorder Waardenburg Syndrome. The mi gene was recently cloned and predicts a basic/helix-loop-helix/leucine zipper (b-HLH-ZIP) factor with tissue-restricted expression. Here, we show that Mi(More)
Activating mutations in BRAF are the most common genetic alterations in melanoma. Inhibition of BRAF by small molecules leads to cell-cycle arrest and apoptosis. We show here that BRAF inhibition also induces an oxidative phosphorylation gene program, mitochondrial biogenesis, and the increased expression of the mitochondrial master regulator, PGC1α. We(More)
Melanoma is often considered one of the most aggressive and treatment-resistant human cancers. It is a disease that, due to the presence of melanin pigment, was accurately diagnosed earlier than most other malignancies and that has been subjected to countless therapeutic strategies. Aside from early surgical resection, no therapeutic modality has been found(More)
Germline mutations at loci encoding the transcription factor Microphthalmia (Mi), the cytokine receptor c-Kit, or its ligand Steel factor (S1) result in strikingly similar defects in mast cell and melanocyte development. Here we describe a biochemical link between Kit signalling and the activity of Mi. Stimulation of melanoma cells with S1 results in(More)