David E. Ruckerbauer

Learn More
Elementary flux mode (EFM) analysis allows the unbiased decomposition of a metabolic network into minimal functional units, making it a powerful tool for metabolic engineering. While the use of EFM analysis (EFMA) is still limited by the size of the models it can handle, EFMA has been successfully applied to solve real-world metabolic engineering problems.(More)
Elucidating how and to what extent lipid metabolism is remodeled under changing conditions is essential for understanding cellular physiology. Here, we analyzed proteome and lipidome dynamics to investigate how regulation of lipid metabolism at the global scale supports remodeling of cellular architecture and processes during physiological adaptations in(More)
Among the vast variety of Saccharomyces cerevisiae strains, the BY family is particularly important because the widely used deletion collections are based on this background. Here we demonstrate that some standard growth media recipes require substantial modifications to provide optimum growth conditions for auxotrophic BY strains and to avoid growth arrest(More)
Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the(More)
Despite the considerable progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We present regEfmtool which is an extension to efmtool that utilizes transcriptional regulatory networks for the computation of elementary flux modes. The implemented(More)
BACKGROUND Metabolic engineering aims to design microorganisms that will generate a product of interest at high yield. Thus, a variety of in silico modeling strategies has been applied successfully, including the concepts of elementary flux modes (EFMs) and constrained minimal cut sets (cMCSs). The EFMs (minimal, steady state pathways through the system)(More)
Elementary flux modes (EFMs) are non-decomposable steady-state pathways in metabolic networks. They characterize phenotypes, quantify robustness or identify engineering targets. An EFM analysis (EFMA) is currently restricted to medium-scale models, as the number of EFMs explodes with the network's size. However, many topologically feasible EFMs are(More)
Elementary flux modes (EFMs) are a well-established tool in metabolic modeling. EFMs are minimal, feasible, steady state pathways through a metabolic network. They are used in various approaches to predict targets for genetic interventions in order to increase production of a molecule of interest via a host cell. Here we give an introduction to the concept(More)
Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic(More)
Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic(More)