David E. Naylor

Learn More
During status epilepticus (SE), GABAergic mechanisms fail and seizures become self-sustaining and pharmacoresistant. During lithiumpilocarpine-induced SE, our studies of postsynaptic GABA(A) receptors in dentate gyrus granule cells show a reduction in the amplitude of miniature IPSCs (mIPSCs). Anatomical studies show a reduction in the colocalization of the(More)
During status epilepticus (SE), GABAergic mechanisms fail and seizures become self-sustaining and pharmacoresistant. During lithiumpilocarpine-induced SE, our studies of postsynaptic GABAA receptors in dentate gyrus granule cells show a reduction in the amplitude of miniature IPSCs (mIPSCs). Anatomical studies show a reduction in the colocalization of the(More)
The response of the developing brain to epileptic seizures and to status epilepticus is highly age-specific. Neonates with their low cerebral metabolic rate and fragmentary neuronal networks can tolerate relatively prolonged seizures without suffering massive cell death, but severe seizures in experimental animals inhibit brain growth, modify neuronal(More)
After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA(More)
PURPOSE We used a model of self-staining status epilepticus (SSSE), induced by brief intermittent stimulation of the perforant path in unanesthetized rats, to study the mechanism of initiation and of maintenance of SSSE and the role of neuropeptides in those processes. METHODS The perforant path was stimulated intermittently for 7 min (ineffective(More)
Status epilepticus (SE) describes an enduring epileptic state during which seizures are unremitting and tend to be self-perpetuating. We describe the clinical phases of generalized convulsive SE, impending SE, established SE, and subtle SE. We discuss the physiological and biochemical cascades which characterize self-sustaining SE (SSSE) in animal models.(More)
We used two models of status epilepticus (SE) to study trafficking of N-methyl-d-aspartate (NMDA) receptors. SE is associated with increased surface expression of NR1 subunits of NMDA receptors, and with an increase of NMDA synaptic and extrasynaptic currents suggesting an increase in number of functional NMDA receptors on dentate granule cells. The(More)
PURPOSE To describe the natural history of chronic epilepsy after experimental self-sustaining status epilepticus (SSSE) and to correlate patterns of SSSE with ictal, interictal, and plastic changes that characterize chronic epilepsy. METHODS SSSE was induced in adult Wistar rats by 30-min intermittent electrical stimulation of the perforant path. In some(More)
PURPOSE To study the pharmacologic and synaptic basis for the early loss of paired-pulse inhibition that occurs in the perforant-path stimulation model of status epilepticus. METHODS Hippocampal slices were prepared from male Wistar rats. Test paired pulses (20- to 50-ms interstimulus interval) of the perforant path were used before and after an(More)