David E. Lincoln

Learn More
The increasing concentration of CO(2) in the atmosphere is expected to lead to global changes in the physical environment of terrestrial organisms. We are beginning to understand how these changes are transmitted into pervasive effects on the interactions between plants and their leaf-feeding insect herbivores. An elevated CO(2) atmosphere often stimulates(More)
Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO2 regimes: ambient, 150 μl l−1 CO2 above ambient, and 300 μl l−1 CO2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar(More)
Rising atmospheric carbon dioxide concentration is expected to increase plant productivity, but little evidence is available regarding effects on insect feeding or growth. Larvae of the soybean looper, a noctuid moth, were fed leaves of soybean plants grown under three carbon dioxide regimes (350, 500 and 650 μl·l-1). Larvae fed at increasingly higher rates(More)
Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 μl l−1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot(More)
Induced volatile terpenes have been commonly reported among diverse agricultural plant species, but less commonly investigated in odorous plant species. Odorous plants synthesize and constitutively store relatively large amounts of volatiles, and these may play a role in defense against herbivores. We examined the effect of herbivory and methyl jasmonate(More)
Systemin is a wound-signaling peptide that mediates defenses of tomato plants against herbivorous insects. Perception of systemin by the membrane-bound receptor SR160 results in activation of MAPKs, synthesis of jasmonic acid (JA), and expression of defense genes. To test the function of MAPKs in the response to systemin, we used virus-induced gene(More)
The carbon supply of peppermint plants was manipulated by growing clonal propagules under three carbon dioxide regimes (350, 500 and 650 μl l-1). Feeding by fourth instar caterpillars of Spodoptera eridania increased with elevated CO2 hostplant regime, as well as with low leaf nitrogen content and by a high proportion of leaf volatile terpenoids. Leaf(More)
Seed- and clonally-propagated plants of Big Sagebrush (Artemisia tridentata var.tridentata) were grown under atmospheric carbon dioxide regimes of 270, 350 and 650 μl l−1 and fed toMelanoplus differentialis andM. sanguinipes grasshoppers. Total shrub biomass significantly increased as carbon dioxide levels increased, as did the weight and area of individual(More)
This study tested the hypothesis that carbon allocation to the production of leaf antiherbivore chemicals reflects the intensity of herbivory and interacts with resource allocation to photosynthesis. The amount of herbivory by Euphydryas chalcedona butterfly larvae was measured on Diplacus aurantiacus shrubs growing in different daily solar irradiance(More)
The terebellid polychaete Amphitrite ornata produces no detectable volatile halogenated secondary metabolites, but frequently inhabits coastal marine sediments heavily contaminated with anthropogenic or biogenic haloaromatic compounds. This animal contains high levels of two very unusual enzymes, dehalogenating peroxidases. We have purified and partially(More)