David E. J. Linden

Learn More
The neuronal response patterns that are required for an adequate behavioural reaction to subjectively relevant changes in the environment are commonly studied by means of oddball paradigms, in which occasional 'target' stimuli have to be detected in a train of frequent 'non-target' stimuli. The detection of such task-relevant stimuli is accompanied by a(More)
Constraints from functional magnetic resonance imaging (fMRI) were used to identify the sources of the visual P300 event-related potential (ERP). Healthy subjects performed a visual three-stimulus oddball paradigm with a difficult discrimination task while fMRI and high-density ERP data were acquired in separate sessions. This paradigm allowed us to(More)
Intracranial recordings, lesion studies, and the combination of functional imaging with source analysis have produced a solid body of evidence about the generators of the P300 event-related potential. Although it is impossible to square all findings obtained across and within methodologies, a consistent pattern of generators has emerged, with target-related(More)
The spatio-temporal distribution of brain activity as revealed by non-invasive functional imaging helps to elucidate the neuronal encoding and processing strategies required by complex cognitive tasks. We investigated visual short-term memory for objects, places and conjunctions in humans using event-related time-resolved functional magnetic resonance(More)
Working memory (WM) capacity limitations and their neurophysiological correlates are of special relevance for the understanding of higher cognitive functions. Evidence from behavioral studies suggests that restricted attentional resources contribute to these capacity limitations. In an event-related functional magnetic resonance imaging (fMRI) study, we(More)
BACKGROUND Since the measurement of human cerebral glucose metabolism (GluM) by positron emission tomography (PET) and that of human cerebral electrical activity by EEG reflect synaptic activity, both methods should be related in their cerebral spatial distribution. Healthy subjects do indeed demonstrate similar metabolic and neuroelectric spatial patterns.(More)
The interplay of "top-down" and "bottom-up" regulated mechanisms is of particular relevance for the rapid (re-)focusing of attention to environmental changes. The purpose of the study was to explore the differential contributions of frontoparietal attentional networks involved in top-down and stimulus-driven processing to the detection of "target" and(More)
A thorough investigation of the neural effects of psychotherapy is needed in order to provide a neurobiological foundation for widely used treatment protocols. This paper reviews functional neuroimaging studies on psychotherapy effects and their methodological background, including the development of symptom provocation techniques. Studies of cognitive(More)
Many studies have suggested that the intraparietal sulcus (IPS), particularly in the dominant hemisphere, is crucially involved in numerical comparisons. However, this parietal structure has been found to be involved in other tasks that require spatial processing or visuospatial attention as well. fMRI was used to investigate three different magnitude(More)
Schizophrenia has been associated with aberrant intrinsic functional organization of the brain but the relationship of such deficits to psychopathology is unclear. In this study, we investigated associations between resting-state networks and individual psychopathology in sixteen patients with paranoid schizophrenia and sixteen matched healthy control(More)