Learn More
This is a report of the Heart Rhythm Society (HRS) Task Force on Catheter and Surgical Ablation of Atrial Fibrillation, developed in partnership with the European Heart Rhythm Association (EHRA), a registered branch of the European Society of Cardiology and the European Cardiac Arrhythmia Society (ECAS), and in collaboration with the American College of(More)
We sought to clarify the significance of cardiac dysfunction and to assess its relationship with elevated biomarkers by using cardiovascular magnetic resonance imaging in healthy, middle-aged subjects immediately after they ran 26.2 miles. Cardiac dysfunction and elevated blood markers of myocardial injury have been reported after prolonged strenuous(More)
We hypothesized that frequency domain analysis of an interatrial atrial fibrillation (AF) electrogram would show a correlation of the variance of the signal and the amplitude of harmonic peaks with the periodicity and morphology (organization) of the AF signal and defibrillation efficacy. We sought to develop an algorithm that would provide a(More)
BACKGROUND The primary mechanism of tissue injury by radiofrequency catheter ablation is presumed to be thermally mediated. However, the myocardial cellular electrophysiological effects of hyperthermia are not well characterized. We used an in vitro model of isolated guinea pig right ventricular papillary muscle to investigate the acute cellular(More)
The characteristics of radiofrequency catheter ablation induced injury in the heart are not well characterized. Since the mechanism of injury by radiofrequency energy is thermal, this study was performed to determine the temperature gradient in myocardial tissue during radiofrequency (RF) catheter ablation, and to validate a thermodynamic model derived to(More)
  • D E Haines
  • 1993
Radiofrequency (RF) catheter ablation is a technique whereby high frequency alternating electrical current with frequencies of 350 kHz to 1 MHz is delivered through electrode catheters to myocardial tissue creating a thermal lesion. The mechanism by which RF current heats tissue is resistive (or ohmic) heating of a narrow rim (< 1 mm) of tissue that is in(More)